P. Sertsi, P. Lamsrichan, Vataya Chunwijitra, M. Okumura
{"title":"Hybrid Input-type Recurrent Neural Network Language Modeling for End-to-end Speech Recognition","authors":"P. Sertsi, P. Lamsrichan, Vataya Chunwijitra, M. Okumura","doi":"10.1109/JCSSE53117.2021.9493812","DOIUrl":null,"url":null,"abstract":"The out-of-vocabulary (OOV) words is a problem that impacts recognition accuracy, whether it is the HMM model, DNN model, or end-to-end speech recognition. This paper proposes a hybrid input-type recurrent neural network language model (RNNLM) for end-to-end speech recognition, which uses word and pseudo-morpheme (PM) as a sub-lexical unit during training. The advantage of PM is a new vocabulary, or unseen vocabulary can be reconstructed from sub-lexical units. The results showed that the accuracy of using the proposed method could reduce the error rate by 1.28% compared to the conventional end-to-end technique.","PeriodicalId":437534,"journal":{"name":"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE53117.2021.9493812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The out-of-vocabulary (OOV) words is a problem that impacts recognition accuracy, whether it is the HMM model, DNN model, or end-to-end speech recognition. This paper proposes a hybrid input-type recurrent neural network language model (RNNLM) for end-to-end speech recognition, which uses word and pseudo-morpheme (PM) as a sub-lexical unit during training. The advantage of PM is a new vocabulary, or unseen vocabulary can be reconstructed from sub-lexical units. The results showed that the accuracy of using the proposed method could reduce the error rate by 1.28% compared to the conventional end-to-end technique.