E-BIAS: A Pervasive EEG-Based Identification and Authentication System

Javad Sohankar, Koosha Sadeghi, Ayan Banerjee, S. Gupta
{"title":"E-BIAS: A Pervasive EEG-Based Identification and Authentication System","authors":"Javad Sohankar, Koosha Sadeghi, Ayan Banerjee, S. Gupta","doi":"10.1145/2815317.2815341","DOIUrl":null,"url":null,"abstract":"Security systems using brain signals or Electroencephalography (EEG), is an emerging field of research. Brain signal characteristics such as chaotic nature and uniqueness, make it an appropriate information source to be used in security systems. In this paper, E-BIAS, a pervasive EEG-based security system with both identification and authentication functionalities is developed. The main challenges are: 1) accuracy, 2) timeliness, 3) energy efficiency, 4) usability, and 5) robustness. Therefore, we apply machine learning algorithms with low training times, multi-tier distributed computing architecture, and commercial single channel dry electrode wireless EEG headsets to respectively overcome the first four challenges. With only two minutes of training time and a simple rest task, the authentication and identification performance reaches 95% and 80%, respectively on 10 subjects. We finally test the robustness of our EEG-based seamless security system against three types of attacks: a) brain impersonation, b) database hacking, and c) communication snooping and discuss the system configurations which can avoid data leakage.","PeriodicalId":120398,"journal":{"name":"Proceedings of the 11th ACM Symposium on QoS and Security for Wireless and Mobile Networks","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on QoS and Security for Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2815317.2815341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Security systems using brain signals or Electroencephalography (EEG), is an emerging field of research. Brain signal characteristics such as chaotic nature and uniqueness, make it an appropriate information source to be used in security systems. In this paper, E-BIAS, a pervasive EEG-based security system with both identification and authentication functionalities is developed. The main challenges are: 1) accuracy, 2) timeliness, 3) energy efficiency, 4) usability, and 5) robustness. Therefore, we apply machine learning algorithms with low training times, multi-tier distributed computing architecture, and commercial single channel dry electrode wireless EEG headsets to respectively overcome the first four challenges. With only two minutes of training time and a simple rest task, the authentication and identification performance reaches 95% and 80%, respectively on 10 subjects. We finally test the robustness of our EEG-based seamless security system against three types of attacks: a) brain impersonation, b) database hacking, and c) communication snooping and discuss the system configurations which can avoid data leakage.
E-BIAS:一个普遍的基于脑电图的识别和认证系统
使用脑信号或脑电图(EEG)的安全系统是一个新兴的研究领域。脑信号的混沌性和唯一性等特点,使其成为安全系统中合适的信息源。本文开发了一种具有身份识别和认证功能的基于脑电图的普适性安全系统E-BIAS。主要的挑战是:1)准确性,2)及时性,3)能源效率,4)可用性,以及5)健壮性。因此,我们采用低训练时间的机器学习算法、多层分布式计算架构和商用单通道干电极无线脑电耳机分别克服了前四个挑战。只需两分钟的训练时间和简单的休息任务,10个受试者的认证和识别性能分别达到95%和80%。最后,我们测试了基于脑电图的无缝安全系统对三种攻击的鲁棒性:a)大脑模拟,b)数据库黑客攻击和c)通信窥探,并讨论了可以避免数据泄漏的系统配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信