Calin Cascaval, Seth Fowler, Pablo Montesinos, W. Piekarski, Mehrdad Reshadi, Behnam Robatmili, Michael Weber, Vrajesh Bhavsar
{"title":"ZOOMM: a parallel web browser engine for multicore mobile devices","authors":"Calin Cascaval, Seth Fowler, Pablo Montesinos, W. Piekarski, Mehrdad Reshadi, Behnam Robatmili, Michael Weber, Vrajesh Bhavsar","doi":"10.1145/2442516.2442543","DOIUrl":null,"url":null,"abstract":"We explore the challenges in expressing and managing concurrency in browsers on mobile devices. Browsers are complex applications that implement multiple standards, need to support legacy behavior, and are highly dynamic and interactive. We present ZOOMM, a highly concurrent web browser engine prototype and show how concurrency is effectively exploited at different levels: speed up computation performance, preload network resources, and preprocess resources outside the critical path of page loading. On a dual-core Android mobile device we demonstrate that ZOOMM is two times faster than the native WebKit based browser when loading the set of pages defined in the Vellamo benchmark.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442516.2442543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
We explore the challenges in expressing and managing concurrency in browsers on mobile devices. Browsers are complex applications that implement multiple standards, need to support legacy behavior, and are highly dynamic and interactive. We present ZOOMM, a highly concurrent web browser engine prototype and show how concurrency is effectively exploited at different levels: speed up computation performance, preload network resources, and preprocess resources outside the critical path of page loading. On a dual-core Android mobile device we demonstrate that ZOOMM is two times faster than the native WebKit based browser when loading the set of pages defined in the Vellamo benchmark.