Fast Body Posture Estimation using Volumetric Features

M. Van den Bergh, E. Koller-Meier, L. Van Gool
{"title":"Fast Body Posture Estimation using Volumetric Features","authors":"M. Van den Bergh, E. Koller-Meier, L. Van Gool","doi":"10.1109/WMVC.2008.4544056","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to real-time pose recognition using Haar-like features. First, linear discriminant analysis (LDA) is introduced as a powerful new approach to train Haar-like features. The LDA-based method is compared to AdaBoost, and proven to be more efficient and requiring less Haar-like features to successfully complete the pose classification task. The weakened memory requirements with regards to AdaBoost allow for a straightforward extension to a 3D pose detector based on 3D Haar-like features, resulting in a rotation-invariant pose detection system.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a novel approach to real-time pose recognition using Haar-like features. First, linear discriminant analysis (LDA) is introduced as a powerful new approach to train Haar-like features. The LDA-based method is compared to AdaBoost, and proven to be more efficient and requiring less Haar-like features to successfully complete the pose classification task. The weakened memory requirements with regards to AdaBoost allow for a straightforward extension to a 3D pose detector based on 3D Haar-like features, resulting in a rotation-invariant pose detection system.
使用体积特征的快速身体姿势估计
本文提出了一种基于haar特征的实时姿态识别方法。首先,引入线性判别分析(LDA)作为训练类哈尔特征的一种强大的新方法。基于lda的方法与AdaBoost进行了比较,结果证明该方法更有效,并且需要更少的haar类特征来成功完成姿态分类任务。关于AdaBoost的弱化内存要求允许基于3D haar样特征的3D姿态检测器的直接扩展,从而产生旋转不变的姿态检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信