Automatically Selecting the Number of Aggregators for Collective I/O Operations

M. Chaarawi, E. Gabriel
{"title":"Automatically Selecting the Number of Aggregators for Collective I/O Operations","authors":"M. Chaarawi, E. Gabriel","doi":"10.1109/CLUSTER.2011.79","DOIUrl":null,"url":null,"abstract":"Optimizing collective I/O operations is of paramount importance for many data intensive high performance computing applications. Despite the large number of algorithms published in the field, most current approaches focus on tuning every single application scenario separately and do not offer a consistent and automatic method of identifying internal parameters for collective I/O algorithms. Most notably, published work exists to optimize the number of processes actually touching a file, the so-called aggregators. This paper introduces a novel runtime approach to determine the number of aggregator processes to be used in a collective I/O operation depending on the file view, process topology, the per-process write saturation point, and the actual amount of data written in a collective write operation. The algorithm is evaluated on two different file systems with multiple benchmarks. In more than 80\\% of the test cases, our algorithm delivered a performance close to the best performance obtained by hand-tuning the number of aggregators for each scenario.","PeriodicalId":200830,"journal":{"name":"2011 IEEE International Conference on Cluster Computing","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2011.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Optimizing collective I/O operations is of paramount importance for many data intensive high performance computing applications. Despite the large number of algorithms published in the field, most current approaches focus on tuning every single application scenario separately and do not offer a consistent and automatic method of identifying internal parameters for collective I/O algorithms. Most notably, published work exists to optimize the number of processes actually touching a file, the so-called aggregators. This paper introduces a novel runtime approach to determine the number of aggregator processes to be used in a collective I/O operation depending on the file view, process topology, the per-process write saturation point, and the actual amount of data written in a collective write operation. The algorithm is evaluated on two different file systems with multiple benchmarks. In more than 80\% of the test cases, our algorithm delivered a performance close to the best performance obtained by hand-tuning the number of aggregators for each scenario.
自动选择聚合I/O操作的聚合器数量
优化集体I/O操作对于许多数据密集型高性能计算应用程序至关重要。尽管该领域发表了大量算法,但目前大多数方法都侧重于单独调优每个应用程序场景,并且没有提供一致的自动方法来识别集合I/O算法的内部参数。最值得注意的是,已发布的工作是为了优化实际接触文件的进程数量,即所谓的聚合器。本文介绍了一种新的运行时方法,根据文件视图、进程拓扑、每进程写饱和点和在集体写操作中写入的实际数据量,来确定在集体I/O操作中使用的聚合器进程数量。该算法在两个不同的文件系统上进行了多个基准测试。在超过80%的测试用例中,我们的算法提供的性能接近于为每个场景手动调优聚合器数量所获得的最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信