Interscale statistical models for wavelet-based image retrieval

S. Sarra-Nsibi, A. Benazza-Benyahia
{"title":"Interscale statistical models for wavelet-based image retrieval","authors":"S. Sarra-Nsibi, A. Benazza-Benyahia","doi":"10.1109/ISSPIT.2008.4775695","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in image indexing in the wavelet transform domain. More precisely, the salient features of the image content correspond to the parameters of the statistical distribution model of the wavelet coefficients. The contribution of our work is twofold. Firstly, a very versatile multivariate interscale distribution driven by the copula theory is chosen to model the joint distribution of the homologous wavelet coefficients considered at different scales. Secondly, the search procedure associated with any request is accelerated through a tree structured search in the features space. Experimental results show that considering interscale information drastically improves the search performances.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are interested in image indexing in the wavelet transform domain. More precisely, the salient features of the image content correspond to the parameters of the statistical distribution model of the wavelet coefficients. The contribution of our work is twofold. Firstly, a very versatile multivariate interscale distribution driven by the copula theory is chosen to model the joint distribution of the homologous wavelet coefficients considered at different scales. Secondly, the search procedure associated with any request is accelerated through a tree structured search in the features space. Experimental results show that considering interscale information drastically improves the search performances.
基于小波的图像检索的尺度间统计模型
在本文中,我们对小波变换域的图像索引感兴趣。更准确地说,图像内容的显著特征对应于小波系数统计分布模型的参数。我们工作的贡献是双重的。首先,选择一种非常通用的多变量尺度间分布,由copula理论驱动,对不同尺度下考虑的同源小波系数的联合分布进行建模;其次,通过特征空间的树状结构搜索来加快与任何请求相关的搜索过程。实验结果表明,考虑尺度间信息可以显著提高搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信