IDCIA: Immunocytochemistry Dataset for Cellular Image Analysis

Abdurahman Ali Mohammed, Catherine Fonder, D. Sakaguchi, Wallapak Tavanapong, S. Mallapragada, A. Idris
{"title":"IDCIA: Immunocytochemistry Dataset for Cellular Image Analysis","authors":"Abdurahman Ali Mohammed, Catherine Fonder, D. Sakaguchi, Wallapak Tavanapong, S. Mallapragada, A. Idris","doi":"10.1145/3587819.3592558","DOIUrl":null,"url":null,"abstract":"We present a new annotated microscopic cellular image dataset to improve the effectiveness of machine learning methods for cellular image analysis. Cell counting is an important step in cell analysis. Typically, domain experts manually count cells in a microscopic image. Automated cell counting can potentially eliminate this tedious, time-consuming process. However, a good, labeled dataset is required for training an accurate machine learning model. Our dataset includes microscopic images of cells, and for each image, the cell count and the location of individual cells. The data were collected as part of an ongoing study investigating the potential of electrical stimulation to modulate stem cell differentiation and possible applications for neural repair. Compared to existing publicly available datasets, our dataset has more images of cells stained with more variety of antibodies (protein components of immune responses against invaders) typically used for cell analysis. The experimental results on this dataset indicate that none of the five existing models under this study are able to achieve sufficiently accurate count to replace the manual methods. The dataset is available at https://figshare.com/articles/dataset/Dataset/21970604.","PeriodicalId":330983,"journal":{"name":"Proceedings of the 14th Conference on ACM Multimedia Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Conference on ACM Multimedia Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587819.3592558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new annotated microscopic cellular image dataset to improve the effectiveness of machine learning methods for cellular image analysis. Cell counting is an important step in cell analysis. Typically, domain experts manually count cells in a microscopic image. Automated cell counting can potentially eliminate this tedious, time-consuming process. However, a good, labeled dataset is required for training an accurate machine learning model. Our dataset includes microscopic images of cells, and for each image, the cell count and the location of individual cells. The data were collected as part of an ongoing study investigating the potential of electrical stimulation to modulate stem cell differentiation and possible applications for neural repair. Compared to existing publicly available datasets, our dataset has more images of cells stained with more variety of antibodies (protein components of immune responses against invaders) typically used for cell analysis. The experimental results on this dataset indicate that none of the five existing models under this study are able to achieve sufficiently accurate count to replace the manual methods. The dataset is available at https://figshare.com/articles/dataset/Dataset/21970604.
IDCIA:细胞图像分析的免疫细胞化学数据集
我们提出了一个新的带注释的微观细胞图像数据集,以提高机器学习方法在细胞图像分析中的有效性。细胞计数是细胞分析的重要步骤。通常,领域专家手动计数显微镜图像中的细胞。自动细胞计数可以潜在地消除这个繁琐、耗时的过程。然而,训练一个准确的机器学习模型需要一个好的、标记的数据集。我们的数据集包括细胞的显微图像,对于每个图像,细胞计数和单个细胞的位置。这些数据是作为一项正在进行的研究的一部分收集的,该研究旨在调查电刺激调节干细胞分化的潜力以及神经修复的可能应用。与现有的公开可用的数据集相比,我们的数据集有更多的细胞图像,这些图像被更多种类的抗体(针对入侵者的免疫反应的蛋白质成分)染色,通常用于细胞分析。在该数据集上的实验结果表明,本研究现有的五种模型都无法达到足够精确的计数,无法取代人工方法。该数据集可在https://figshare.com/articles/dataset/Dataset/21970604上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信