Systematic Literature Review on Software Effort Estimation Using Machine Learning Approaches

P. Sharma, Jaiteg Singh
{"title":"Systematic Literature Review on Software Effort Estimation Using Machine Learning Approaches","authors":"P. Sharma, Jaiteg Singh","doi":"10.1109/ICNGCIS.2017.33","DOIUrl":null,"url":null,"abstract":"Accurate effort estimation is amongst the key activities in the software project development. It directly impacts the time and cost of the software projects. This paper presents a systematic literature review of software effort estimation techniques using machine learning. This review presents a discussion about the research trends in machine learning inspired software effort estimation. The results of the systematic review has concluded prominent trends of machine learning approaches, size metrics, benchmark datasets, validation methods etc. used for software effort estimation.","PeriodicalId":314733,"journal":{"name":"2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNGCIS.2017.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Accurate effort estimation is amongst the key activities in the software project development. It directly impacts the time and cost of the software projects. This paper presents a systematic literature review of software effort estimation techniques using machine learning. This review presents a discussion about the research trends in machine learning inspired software effort estimation. The results of the systematic review has concluded prominent trends of machine learning approaches, size metrics, benchmark datasets, validation methods etc. used for software effort estimation.
使用机器学习方法进行软件工作量估算的系统文献综述
准确的工作量评估是软件项目开发中的关键活动之一。它直接影响软件项目的时间和成本。本文对使用机器学习的软件工作量估算技术进行了系统的文献综述。本文综述了基于机器学习的软件工作量估算的研究趋势。系统综述的结果总结了用于软件工作量估计的机器学习方法、规模度量、基准数据集、验证方法等的突出趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信