Transforming the search space with Gray coding

Keith E. Mathias, L. D. Whitley
{"title":"Transforming the search space with Gray coding","authors":"Keith E. Mathias, L. D. Whitley","doi":"10.1109/ICEC.1994.349897","DOIUrl":null,"url":null,"abstract":"Genetic algorithm test functions have typically been designed with properties in numeric space that make it difficult to locate the optimal solution using traditional optimization techniques. The use of Gray coding has been found to enhance the performance of genetic search in some cases. However, Gray coding produces a different function mapping that may have fewer local optima and different relative hyperplane relationships. Therefore, inferences about a function will not necessarily hold when transformed to another search space. In fact, empirical results indicate that some genetic algorithm test functions are significantly altered by Gray coding such that local optimization methods often perform better than genetic algorithms.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Genetic algorithm test functions have typically been designed with properties in numeric space that make it difficult to locate the optimal solution using traditional optimization techniques. The use of Gray coding has been found to enhance the performance of genetic search in some cases. However, Gray coding produces a different function mapping that may have fewer local optima and different relative hyperplane relationships. Therefore, inferences about a function will not necessarily hold when transformed to another search space. In fact, empirical results indicate that some genetic algorithm test functions are significantly altered by Gray coding such that local optimization methods often perform better than genetic algorithms.<>
用灰色编码变换搜索空间
遗传算法测试函数通常被设计成具有数值空间的性质,这使得使用传统的优化技术很难找到最优解。在某些情况下,使用灰色编码可以提高遗传搜索的性能。然而,Gray编码产生不同的函数映射,可能具有更少的局部最优和不同的相对超平面关系。因此,当转换到另一个搜索空间时,关于函数的推断不一定成立。事实上,实证结果表明,灰色编码显著改变了某些遗传算法的测试函数,使得局部优化方法往往优于遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信