A Framework for Analyzing Fairness, Accountability, Transparency and Ethics: A Use-case in Banking Services

Ettore Mariotti, J. M. Alonso, R. Confalonieri
{"title":"A Framework for Analyzing Fairness, Accountability, Transparency and Ethics: A Use-case in Banking Services","authors":"Ettore Mariotti, J. M. Alonso, R. Confalonieri","doi":"10.1109/FUZZ45933.2021.9494481","DOIUrl":null,"url":null,"abstract":"We introduce a novel framework to deal with fairness, accountability and explainability of intelligent systems. This framework puts together several tools to deal with bias at the level of data, algorithms and human cognition. The framework makes use of intelligent classifiers endowed with fuzzy-grounded linguistic explainability. As a result, it facilitates the exhaustive comparison of (white/grey/black)-box modelling techniques in combination with different strategies for handling missing values and unbalanced datasets. The proposal is evaluated on a realworld dataset in the context of banking services and reported results are encouraging.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce a novel framework to deal with fairness, accountability and explainability of intelligent systems. This framework puts together several tools to deal with bias at the level of data, algorithms and human cognition. The framework makes use of intelligent classifiers endowed with fuzzy-grounded linguistic explainability. As a result, it facilitates the exhaustive comparison of (white/grey/black)-box modelling techniques in combination with different strategies for handling missing values and unbalanced datasets. The proposal is evaluated on a realworld dataset in the context of banking services and reported results are encouraging.
分析公平、问责、透明度和道德的框架:银行服务用例
我们引入了一个新的框架来处理智能系统的公平性、问责性和可解释性。该框架将几个工具放在一起,以处理数据、算法和人类认知层面的偏见。该框架利用了具有模糊语言可解释性的智能分类器。因此,它促进了(白/灰/黑)盒建模技术与处理缺失值和不平衡数据集的不同策略相结合的详尽比较。该提案在银行服务背景下的真实数据集上进行了评估,报告的结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信