{"title":"A compact waveguide diplexer employing dual-band resonators","authors":"Li Zhu, R. Mansour, Yu Ming","doi":"10.1109/MWSYM.2014.6848499","DOIUrl":null,"url":null,"abstract":"This paper outlines a new class of diplexers realized using a combination of dual-band cavities and single-band cavities. The proposed diplexer does not require junctions and can achieve similar performance with fewer cavities, thus significantly reducing the size of the diplexer when compared to traditional approaches. The concept is potentially applicable to most dual-band cavities as demonstrated in this paper using rectangular waveguide cavities. A unique layout is proposed that combines the use of dual-band cavities operating in TE101 and TE011 modes as well as single-band cavities operating in TE101 or TE102 mode. The result is a diplexer that is very compact in size while offering increased Q and an improved spurious free window. To verify the concept a 4th order Ku-band diplexer is designed, manufactured, and tested to allow comparison to a traditional design.","PeriodicalId":262816,"journal":{"name":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2014.6848499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper outlines a new class of diplexers realized using a combination of dual-band cavities and single-band cavities. The proposed diplexer does not require junctions and can achieve similar performance with fewer cavities, thus significantly reducing the size of the diplexer when compared to traditional approaches. The concept is potentially applicable to most dual-band cavities as demonstrated in this paper using rectangular waveguide cavities. A unique layout is proposed that combines the use of dual-band cavities operating in TE101 and TE011 modes as well as single-band cavities operating in TE101 or TE102 mode. The result is a diplexer that is very compact in size while offering increased Q and an improved spurious free window. To verify the concept a 4th order Ku-band diplexer is designed, manufactured, and tested to allow comparison to a traditional design.