Hardware-Agnostic Interactive Exascale In Situ Visualization of Particle-In-Cell Simulations

F. Meyer, Benjamín Hernández, R. Pausch, R. Widera, David Groß, S. Bastrakov, A. Huebl, G. Juckeland, J. Kelling, M. Leinhauser, David Rogers, U. Schramm, K. Steiniger, S. Gumhold, Jeff Young, M. Bussmann, S. Chandrasekaran, A. Debus
{"title":"Hardware-Agnostic Interactive Exascale In Situ Visualization of Particle-In-Cell Simulations","authors":"F. Meyer, Benjamín Hernández, R. Pausch, R. Widera, David Groß, S. Bastrakov, A. Huebl, G. Juckeland, J. Kelling, M. Leinhauser, David Rogers, U. Schramm, K. Steiniger, S. Gumhold, Jeff Young, M. Bussmann, S. Chandrasekaran, A. Debus","doi":"10.1145/3592979.3593408","DOIUrl":null,"url":null,"abstract":"The volume of data generated by exascale simulations requires scalable tools for analysis and visualization. Due to the relatively low I/O bandwidth of modern HPC systems, it is crucial to work as close as possible with simulated data via in situ approaches. In situ visualization provides insights into simulation data and, with the help of additional interactive analysis tools, can support the scientific discovery process at an early stage. Such in situ visualization tools need to be hardware-independent given the ever-increasing hardware diversity of modern supercomputers. We present a new in situ 3D vector field visualization algorithm for particle-in-cell (PIC) simulations and performance evaluation of the solution developed at large-scale. We create a solution in a hardware-agnostic approach to support high throughput and interactive in situ processing on leadership class computing systems. To that end, we demonstrate performance portability on Summit's and the Frontier's pre-exascale testbed at the Oak Ridge Leadership Computing Facility.","PeriodicalId":174137,"journal":{"name":"Proceedings of the Platform for Advanced Scientific Computing Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Platform for Advanced Scientific Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592979.3593408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The volume of data generated by exascale simulations requires scalable tools for analysis and visualization. Due to the relatively low I/O bandwidth of modern HPC systems, it is crucial to work as close as possible with simulated data via in situ approaches. In situ visualization provides insights into simulation data and, with the help of additional interactive analysis tools, can support the scientific discovery process at an early stage. Such in situ visualization tools need to be hardware-independent given the ever-increasing hardware diversity of modern supercomputers. We present a new in situ 3D vector field visualization algorithm for particle-in-cell (PIC) simulations and performance evaluation of the solution developed at large-scale. We create a solution in a hardware-agnostic approach to support high throughput and interactive in situ processing on leadership class computing systems. To that end, we demonstrate performance portability on Summit's and the Frontier's pre-exascale testbed at the Oak Ridge Leadership Computing Facility.
与硬件无关的粒子在细胞内模拟的交互式百亿亿次原位可视化
百亿亿次模拟产生的数据量需要可扩展的分析和可视化工具。由于现代高性能计算系统的I/O带宽相对较低,因此通过原位方法尽可能接近模拟数据至关重要。现场可视化提供了对模拟数据的洞察,并且在额外的交互式分析工具的帮助下,可以在早期阶段支持科学发现过程。鉴于现代超级计算机的硬件多样性不断增加,这种原位可视化工具需要与硬件无关。我们提出了一种新的原位三维矢量场可视化算法,用于大规模开发的颗粒胞内(PIC)模拟和性能评估。我们以硬件不可知的方式创建了一个解决方案,以支持领导级计算系统上的高吞吐量和交互式原位处理。为此,我们在橡树岭领导计算设施的Summit和Frontier的前百亿亿次测试平台上演示了性能可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信