Automated prognosis analysis for traumatic brain injury CT images

Tianxia Gong, Abhinit Kumar Ambastha, C. Tan, Bolan Su, Tchoyoson C. C. Lim
{"title":"Automated prognosis analysis for traumatic brain injury CT images","authors":"Tianxia Gong, Abhinit Kumar Ambastha, C. Tan, Bolan Su, Tchoyoson C. C. Lim","doi":"10.1109/ACPR.2015.7486531","DOIUrl":null,"url":null,"abstract":"Traumatic brain injury (TBI) is a major cause of deaths worldwide. In this paper, we propose a framework for automatic brain CT image analysis and Glasgow Outcome Scale (GOS) prediction for TBI cases. For each TBI case, we first select a fixed number of images to represent the case, then we extract Gabor features from these images and form a feature vector. As a large number of features are extracted from the images, we use PCA to select the features for training and testing. We then use random forest for training and testing of our prognosis model. The overall accuracy of binary GOS classification is between 73% and 75% for different GOS dichotomizations.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Traumatic brain injury (TBI) is a major cause of deaths worldwide. In this paper, we propose a framework for automatic brain CT image analysis and Glasgow Outcome Scale (GOS) prediction for TBI cases. For each TBI case, we first select a fixed number of images to represent the case, then we extract Gabor features from these images and form a feature vector. As a large number of features are extracted from the images, we use PCA to select the features for training and testing. We then use random forest for training and testing of our prognosis model. The overall accuracy of binary GOS classification is between 73% and 75% for different GOS dichotomizations.
外伤性脑损伤CT图像自动预后分析
创伤性脑损伤(TBI)是世界范围内死亡的一个主要原因。在本文中,我们提出了一个自动脑CT图像分析和格拉斯哥预后量表(GOS)预测TBI病例的框架。对于每个TBI病例,我们首先选择固定数量的图像来表示病例,然后从这些图像中提取Gabor特征并形成特征向量。由于从图像中提取了大量的特征,我们使用PCA来选择用于训练和测试的特征。然后我们使用随机森林来训练和测试我们的预测模型。不同GOS二分类方法的GOS二元分类总体准确率在73% ~ 75%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信