Explanations of news personalisation across countries and media types

Mariella Bastian, M. Makhortykh, Jaron Harambam, M. V. Drunen
{"title":"Explanations of news personalisation across countries and media types","authors":"Mariella Bastian, M. Makhortykh, Jaron Harambam, M. V. Drunen","doi":"10.14763/2020.4.1504","DOIUrl":null,"url":null,"abstract":"News outlets worldwide increasingly adopt user- and system-driven personalisation to individualise their news delivery. Yet, the technical implementation of news personalisation systems, in particular the one relying on algorithmic news recommenders (ANRs) and tailoring individual news suggestions with the help of user data, often remains opaque. In our article, we examine how news personalisation is used by quality and popular media in three countries with different media accountability infrastructures - Brazil, the Netherlands, and Russia - and investigate how information about personalisation usage is communicated to the news readers via privacy policies. Our findings point out that news personalisation systems are predominantly treated as black boxes that indicate a significant gap between practice and theory of algorithmic transparency, in particular in the non-EU context.","PeriodicalId":219999,"journal":{"name":"Internet Policy Rev.","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Policy Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14763/2020.4.1504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

News outlets worldwide increasingly adopt user- and system-driven personalisation to individualise their news delivery. Yet, the technical implementation of news personalisation systems, in particular the one relying on algorithmic news recommenders (ANRs) and tailoring individual news suggestions with the help of user data, often remains opaque. In our article, we examine how news personalisation is used by quality and popular media in three countries with different media accountability infrastructures - Brazil, the Netherlands, and Russia - and investigate how information about personalisation usage is communicated to the news readers via privacy policies. Our findings point out that news personalisation systems are predominantly treated as black boxes that indicate a significant gap between practice and theory of algorithmic transparency, in particular in the non-EU context.
跨国家和媒体类型的新闻个性化解释
世界各地的新闻机构越来越多地采用用户和系统驱动的个性化方式来个性化新闻传递。然而,新闻个性化系统的技术实现,特别是依靠算法新闻推荐(anr)和在用户数据的帮助下定制个人新闻建议的系统,往往仍然不透明。在我们的文章中,我们研究了巴西、荷兰和俄罗斯这三个拥有不同媒体问责制基础设施的国家的高质量和流行媒体如何使用新闻个性化,并调查了关于个性化使用的信息如何通过隐私政策传达给新闻读者。我们的研究结果指出,新闻个性化系统主要被视为黑盒子,表明算法透明度的实践和理论之间存在重大差距,特别是在非欧盟背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信