Estimating the Uncertainty in Emotion Attributes using Deep Evidential Regression

Wen Wu, C. Zhang, P. Woodland
{"title":"Estimating the Uncertainty in Emotion Attributes using Deep Evidential Regression","authors":"Wen Wu, C. Zhang, P. Woodland","doi":"10.48550/arXiv.2306.06760","DOIUrl":null,"url":null,"abstract":"In automatic emotion recognition (AER), labels assigned by different human annotators to the same utterance are often inconsistent due to the inherent complexity of emotion and the subjectivity of perception. Though deterministic labels generated by averaging or voting are often used as the ground truth, it ignores the intrinsic uncertainty revealed by the inconsistent labels. This paper proposes a Bayesian approach, deep evidential emotion regression (DEER), to estimate the uncertainty in emotion attributes. Treating the emotion attribute labels of an utterance as samples drawn from an unknown Gaussian distribution, DEER places an utterance-specific normal-inverse gamma prior over the Gaussian likelihood and predicts its hyper-parameters using a deep neural network model. It enables a joint estimation of emotion attributes along with the aleatoric and epistemic uncertainties. AER experiments on the widely used MSP-Podcast and IEMOCAP datasets showed DEER produced state-of-the-art results for both the mean values and the distribution of emotion attributes.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.06760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In automatic emotion recognition (AER), labels assigned by different human annotators to the same utterance are often inconsistent due to the inherent complexity of emotion and the subjectivity of perception. Though deterministic labels generated by averaging or voting are often used as the ground truth, it ignores the intrinsic uncertainty revealed by the inconsistent labels. This paper proposes a Bayesian approach, deep evidential emotion regression (DEER), to estimate the uncertainty in emotion attributes. Treating the emotion attribute labels of an utterance as samples drawn from an unknown Gaussian distribution, DEER places an utterance-specific normal-inverse gamma prior over the Gaussian likelihood and predicts its hyper-parameters using a deep neural network model. It enables a joint estimation of emotion attributes along with the aleatoric and epistemic uncertainties. AER experiments on the widely used MSP-Podcast and IEMOCAP datasets showed DEER produced state-of-the-art results for both the mean values and the distribution of emotion attributes.
用深度证据回归估计情绪属性的不确定性
在自动情感识别(AER)中,由于情感固有的复杂性和感知的主观性,不同的人类注释者给同一话语分配的标签往往不一致。虽然通过平均或投票产生的确定性标签经常被用作基础真理,但它忽略了不一致标签所揭示的内在不确定性。本文提出了一种贝叶斯方法——深度证据情感回归(deep evidence emotion regression, DEER)来估计情感属性的不确定性。DEER将话语的情感属性标签视为从未知高斯分布中提取的样本,将话语特定的正态逆伽马置于高斯似然之上,并使用深度神经网络模型预测其超参数。它能够联合估计情感属性以及任意和认知的不确定性。在广泛使用的MSP-Podcast和IEMOCAP数据集上进行的AER实验表明,DEER对情感属性的平均值和分布都产生了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信