An Improved Framework Called Du++ Applied to Brain Tumor Segmentation

Fujuan Chen, Yi Ding, Zhixing Wu, Dongyuan Wu, Jinmei Wen
{"title":"An Improved Framework Called Du++ Applied to Brain Tumor Segmentation","authors":"Fujuan Chen, Yi Ding, Zhixing Wu, Dongyuan Wu, Jinmei Wen","doi":"10.1109/ICCWAMTIP.2018.8632559","DOIUrl":null,"url":null,"abstract":"We all know the advanced framework which is used to medical image processing is Unet, but it is struggling when it processes complex images. DenseNet is the state-of-the-art network, which has large parameters compared with Unet. Unet++ performs better on complex images than Unet. In this work, we proposes an novel network structure called Dense_Unet++(DU++), that can take advantage of feature fusion of the Unet++, reduces the DenseNet's parameters and further improves the segmentation accuracy. Our model is mainly implemented by combine Half Dense Unet(HDU)and Unet++. The long connections with different semantic levels do not achieve the effect of feature fusion, so our paper propose that built a series of bridges for different semantic levels within the DU++ and abandoned the original long connections. We apply this framework to brain tumor segmentation. In the end, our experiment achieved a promising result.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We all know the advanced framework which is used to medical image processing is Unet, but it is struggling when it processes complex images. DenseNet is the state-of-the-art network, which has large parameters compared with Unet. Unet++ performs better on complex images than Unet. In this work, we proposes an novel network structure called Dense_Unet++(DU++), that can take advantage of feature fusion of the Unet++, reduces the DenseNet's parameters and further improves the segmentation accuracy. Our model is mainly implemented by combine Half Dense Unet(HDU)and Unet++. The long connections with different semantic levels do not achieve the effect of feature fusion, so our paper propose that built a series of bridges for different semantic levels within the DU++ and abandoned the original long connections. We apply this framework to brain tumor segmentation. In the end, our experiment achieved a promising result.
改进的du++框架在脑肿瘤分割中的应用
我们都知道用于医学图像处理的先进框架是Unet,但它在处理复杂图像时却举步维艰。DenseNet是最先进的网络,与Unet相比具有更大的参数。Unet++在复杂图像上的表现优于Unet。在这项工作中,我们提出了一种新的网络结构,称为Dense_Unet++(du++),它可以利用Unet++的特征融合,减少DenseNet的参数,进一步提高分割精度。该模型主要采用半密集Unet(HDU)和Unet++的结合实现。不同语义层次的长连接无法达到特征融合的效果,因此本文提出在du++内部构建一系列不同语义层次的桥接,放弃原有的长连接。我们将此框架应用于脑肿瘤的分割。最后,我们的实验取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信