Conditional Random Field Feature Generation of Smart Home Sensor Data using Random Forests

M. Eastwood, A. Konios, Bo Tan, Yanguo Jing, Abdul Hamid
{"title":"Conditional Random Field Feature Generation of Smart Home Sensor Data using Random Forests","authors":"M. Eastwood, A. Konios, Bo Tan, Yanguo Jing, Abdul Hamid","doi":"10.1109/IMBIOC.2019.8777764","DOIUrl":null,"url":null,"abstract":"A typical approach to building a feature set for a conditional random field model is to build a large set of conjunctions of atomic tests, all of which adhere to a small number of relatively simple templates. Building more complex features in this way can be difficult, as the more complex templates needed to do this can result in a combinatoric explosion in the number of features. We use the inherent instability of decision trees to produce a small set of more complex conjunctions that are particularly suitable for the problem to be solved, using the same techniques used in generating random forest ensemble classifiers, and build a CRF on these features. We apply this method to an activity recognition problem on a dataset from the CASAS smart home project, in which we predict activities of daily living from sensor activations.","PeriodicalId":171472,"journal":{"name":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIOC.2019.8777764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A typical approach to building a feature set for a conditional random field model is to build a large set of conjunctions of atomic tests, all of which adhere to a small number of relatively simple templates. Building more complex features in this way can be difficult, as the more complex templates needed to do this can result in a combinatoric explosion in the number of features. We use the inherent instability of decision trees to produce a small set of more complex conjunctions that are particularly suitable for the problem to be solved, using the same techniques used in generating random forest ensemble classifiers, and build a CRF on these features. We apply this method to an activity recognition problem on a dataset from the CASAS smart home project, in which we predict activities of daily living from sensor activations.
使用随机森林生成智能家居传感器数据的条件随机场特征
为条件随机场模型构建特征集的典型方法是构建大量原子测试的连接集,所有这些连接都遵循少量相对简单的模板。以这种方式构建更复杂的特性可能会很困难,因为这样做所需的更复杂的模板可能会导致特性数量的组合爆炸。我们使用决策树固有的不稳定性来生成一组特别适合待解决问题的更复杂的连词,使用与生成随机森林集成分类器相同的技术,并在这些特征上构建CRF。我们将此方法应用于CASAS智能家居项目数据集上的活动识别问题,其中我们通过传感器激活来预测日常生活活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信