Alovera: A Fast Stream Processing System for Large-Scale Data

Zhen'an Zhang, Dongjie Zhang, Xiaopeng Yu, Jing Wang, Chunjiang He, Pingpeng Yuan, Hai Jin
{"title":"Alovera: A Fast Stream Processing System for Large-Scale Data","authors":"Zhen'an Zhang, Dongjie Zhang, Xiaopeng Yu, Jing Wang, Chunjiang He, Pingpeng Yuan, Hai Jin","doi":"10.1109/CHINAGRID.2013.9","DOIUrl":null,"url":null,"abstract":"Growing of data volume poses challenges to data processing system. In this paper, Alovera, a fast stream processing system for large-scale data is presented. By using columnar data layout and stream processing, it is capable of pipelining data processing efficiently. It can process part of data instead of waiting for all data to be ready for the next operation. Thus, it can reduce the query time dramatically. Experimental results indicate significant performance improvement in a variety of tasks. In the experiments, we also evaluate our methods with different systems including HadoopDB and Hive. The extensive experiments confirm efficiency and better performance of our system.","PeriodicalId":251153,"journal":{"name":"2013 8th ChinaGrid Annual Conference","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINAGRID.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Growing of data volume poses challenges to data processing system. In this paper, Alovera, a fast stream processing system for large-scale data is presented. By using columnar data layout and stream processing, it is capable of pipelining data processing efficiently. It can process part of data instead of waiting for all data to be ready for the next operation. Thus, it can reduce the query time dramatically. Experimental results indicate significant performance improvement in a variety of tasks. In the experiments, we also evaluate our methods with different systems including HadoopDB and Hive. The extensive experiments confirm efficiency and better performance of our system.
Alovera:大规模数据的快速流处理系统
数据量的增长对数据处理系统提出了挑战。本文介绍了一种大规模数据快速流处理系统Alovera。采用柱状数据布局和流处理,实现了数据的高效流水线化处理。它可以处理部分数据,而不是等待所有数据准备好进行下一个操作。因此,它可以大大减少查询时间。实验结果表明,在各种任务的显著性能提高。在实验中,我们还在不同的系统(包括HadoopDB和Hive)上对我们的方法进行了评估。大量的实验验证了系统的有效性和较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信