Cluster Based Vector Attribute Filtering

Fred N. Kiwanuka, M. Wilkinson
{"title":"Cluster Based Vector Attribute Filtering","authors":"Fred N. Kiwanuka, M. Wilkinson","doi":"10.1515/mathm-2016-0007","DOIUrl":null,"url":null,"abstract":"Abstract Morphological attribute filters operate on images based on properties or attributes of connected components. Until recently, attribute filtering was based on a single global threshold on a scalar property to remove or retain objects. A single threshold struggles in case no single property or attribute value has a suitable, usually multi-modal, distribution. Vector-attribute filtering allows better description of characteristic features for 2D images. In this paper, we apply vector-attribute filtering to 3D and incorporate unsupervised pattern recognition, where connected components are classified based on the similarity of feature vectors. Using a single attribute allows multi-thresholding for attribute filters where more than two classes of structures of interest can be selected. In vector-attribute filters automatic clustering avoids the need for either setting very many attribute thresholds, or finding suitable class prototypes in 3D and setting a dissimilarity threshold. Explorative visualization reduces to visualizing and selecting relevant clusters. We show that the performance of these new filters is better than those of regular attribute filters in enhancement of objects in medical images.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"28 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2016-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract Morphological attribute filters operate on images based on properties or attributes of connected components. Until recently, attribute filtering was based on a single global threshold on a scalar property to remove or retain objects. A single threshold struggles in case no single property or attribute value has a suitable, usually multi-modal, distribution. Vector-attribute filtering allows better description of characteristic features for 2D images. In this paper, we apply vector-attribute filtering to 3D and incorporate unsupervised pattern recognition, where connected components are classified based on the similarity of feature vectors. Using a single attribute allows multi-thresholding for attribute filters where more than two classes of structures of interest can be selected. In vector-attribute filters automatic clustering avoids the need for either setting very many attribute thresholds, or finding suitable class prototypes in 3D and setting a dissimilarity threshold. Explorative visualization reduces to visualizing and selecting relevant clusters. We show that the performance of these new filters is better than those of regular attribute filters in enhancement of objects in medical images.
基于聚类的矢量属性过滤
形态属性过滤器基于连接组件的属性或属性对图像进行操作。直到最近,属性过滤还是基于标量属性上的单个全局阈值来删除或保留对象。如果没有单个属性或属性值具有合适的(通常是多模态)分布,则单个阈值会出现问题。矢量属性滤波可以更好地描述二维图像的特征特征。在本文中,我们将向量属性滤波应用于3D,并结合无监督模式识别,其中基于特征向量的相似性对连接组件进行分类。使用单个属性允许为属性过滤器设置多个阈值,其中可以选择两类以上感兴趣的结构。在矢量属性过滤器中,自动聚类避免了设置太多属性阈值的需要,也避免了在3D中寻找合适的类原型并设置不相似阈值的需要。探索性可视化简化为可视化和选择相关集群。结果表明,该滤波器在医学图像中增强物体的性能优于常规属性滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信