C. J. V. Filho, F. Scalcon, R. Vieira, B. Nahid-Mobarakeh
{"title":"A New β-axis Based High-Frequency Signal Injection Model for Low-Speed Sensorless IPMSM Drives","authors":"C. J. V. Filho, F. Scalcon, R. Vieira, B. Nahid-Mobarakeh","doi":"10.1109/IECON49645.2022.9968828","DOIUrl":null,"url":null,"abstract":"This paper presents a high frequency linear model for low-speed sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The proposed model uses a β-axis high frequency signal injection in order to model a new high frequency flux variable, which has similar properties to the standard electromotive force (EMF) used for high-speed sensorless control. Through the proposed model, the well established observer techniques from the literature can be used for rotor position and speed estimation. Thus, the low-speed sensorless scheme can be designed in similar form as the high-speed EMF based methods. Here, position and speed estimation are performed by an adaptive full-order observer, which is designed through a pole placement method and its stability constraints are investigated. Simulation results validate the proposed high frequency linear model and adaptive observer design method under sensorless vector control.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9968828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a high frequency linear model for low-speed sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The proposed model uses a β-axis high frequency signal injection in order to model a new high frequency flux variable, which has similar properties to the standard electromotive force (EMF) used for high-speed sensorless control. Through the proposed model, the well established observer techniques from the literature can be used for rotor position and speed estimation. Thus, the low-speed sensorless scheme can be designed in similar form as the high-speed EMF based methods. Here, position and speed estimation are performed by an adaptive full-order observer, which is designed through a pole placement method and its stability constraints are investigated. Simulation results validate the proposed high frequency linear model and adaptive observer design method under sensorless vector control.