GridLDA of Gabor wavelet features for palmprint identification

Hoang Thien Van, T. Le
{"title":"GridLDA of Gabor wavelet features for palmprint identification","authors":"Hoang Thien Van, T. Le","doi":"10.1145/2350716.2350736","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel palmprint recognition algorithm based on using GridLDA for Gabor wavelet features. Our proposed method includes two main steps for palmprint feature extraction: (1) Local invariant features are extracted by computing the Gabor wavelet Engergy of the original images that handles the palm structure and the variations of illumination. (2) An improved two-dimensional Linear Discriminant Analysis, called GridLDA, is then applied to further remove redundant information and form a discriminant representation more suitable for palmprint recognition. The experimental results for the identification on public database of Hong Kong Polytechnic University (PolyU) demonstrate the effectiveness of the proposed method.","PeriodicalId":208300,"journal":{"name":"Proceedings of the 3rd Symposium on Information and Communication Technology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2350716.2350736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose a novel palmprint recognition algorithm based on using GridLDA for Gabor wavelet features. Our proposed method includes two main steps for palmprint feature extraction: (1) Local invariant features are extracted by computing the Gabor wavelet Engergy of the original images that handles the palm structure and the variations of illumination. (2) An improved two-dimensional Linear Discriminant Analysis, called GridLDA, is then applied to further remove redundant information and form a discriminant representation more suitable for palmprint recognition. The experimental results for the identification on public database of Hong Kong Polytechnic University (PolyU) demonstrate the effectiveness of the proposed method.
Gabor小波特征的网格da掌纹识别
本文提出了一种基于网格da的Gabor小波特征掌纹识别算法。本文提出的掌纹特征提取方法包括两个主要步骤:(1)通过计算处理掌纹结构和光照变化的原始图像的Gabor小波能量来提取局部不变特征。(2)利用改进的二维线性判别分析(GridLDA)进一步去除冗余信息,形成更适合掌纹识别的判别表示。在香港理工大学公共数据库上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信