{"title":"Bose-Einstein Condensate","authors":"A. Bhattacherjee","doi":"10.1201/9780429022937-5","DOIUrl":null,"url":null,"abstract":"The researchers used a microwave resonator (brown) that generated fields with frequencies in the microwave range, which excited the magnons in an yttrium iron garnet film (red) and formed a Bose-Einstein condensate. An inhomogeneous static magnetic field created forces acting on the condensate. Using probing laser light (green) focused on the surface of the sample, the researchers recorded the local density of the magnons and were able to observe their interaction in the condensate (Brillouin light scattering spectroscopy). Credit: I. V. Borisenko et al./ Nature Communications","PeriodicalId":268564,"journal":{"name":"New Frontiers in Nanochemistry","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Frontiers in Nanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429022937-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The researchers used a microwave resonator (brown) that generated fields with frequencies in the microwave range, which excited the magnons in an yttrium iron garnet film (red) and formed a Bose-Einstein condensate. An inhomogeneous static magnetic field created forces acting on the condensate. Using probing laser light (green) focused on the surface of the sample, the researchers recorded the local density of the magnons and were able to observe their interaction in the condensate (Brillouin light scattering spectroscopy). Credit: I. V. Borisenko et al./ Nature Communications