How to Optimize the Quality of Sensor Data Streams

Anja Klein, Wolfgang Lehner
{"title":"How to Optimize the Quality of Sensor Data Streams","authors":"Anja Klein, Wolfgang Lehner","doi":"10.1109/ICCGI.2009.10","DOIUrl":null,"url":null,"abstract":"Present data stream management systems allow the automatic recording and processing of huge data volumes to guide any kind of process control or business decision. However, a crucial problem is posed by data quality deficiencies due to imprecise sensors, environmental influences, transfer failures, etc. If not handled carefully, they lead to misguided decisions and inappropriate actions. In this paper, we present the quality-driven optimization of stream processing to improve the resulting quality of data and service. First, we present the optimization objectives and discuss the parameterization of stream processing operators to define the underlying optimization problem. We develop the generic optimization framework and present the quality-driven evolution strategy (QES). Finally, we show that the designed optimization scales very well with regard to processing complexity and reduces numerical errors in the contact lens production monitoring.","PeriodicalId":201271,"journal":{"name":"2009 Fourth International Multi-Conference on Computing in the Global Information Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Multi-Conference on Computing in the Global Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2009.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Present data stream management systems allow the automatic recording and processing of huge data volumes to guide any kind of process control or business decision. However, a crucial problem is posed by data quality deficiencies due to imprecise sensors, environmental influences, transfer failures, etc. If not handled carefully, they lead to misguided decisions and inappropriate actions. In this paper, we present the quality-driven optimization of stream processing to improve the resulting quality of data and service. First, we present the optimization objectives and discuss the parameterization of stream processing operators to define the underlying optimization problem. We develop the generic optimization framework and present the quality-driven evolution strategy (QES). Finally, we show that the designed optimization scales very well with regard to processing complexity and reduces numerical errors in the contact lens production monitoring.
如何优化传感器数据流的质量
目前的数据流管理系统允许自动记录和处理大量数据,以指导任何类型的过程控制或业务决策。然而,由于传感器不精确、环境影响、传输失败等原因,数据质量不足构成了一个关键问题。如果处理不当,就会导致错误的决定和不恰当的行为。在本文中,我们提出了流处理的质量驱动优化,以提高数据和服务的最终质量。首先,我们提出了优化目标,并讨论了流处理算子的参数化,以定义潜在的优化问题。我们开发了通用优化框架,并提出了质量驱动进化策略(QES)。最后,我们证明了所设计的优化在处理复杂性方面具有很好的伸缩性,并减少了隐形眼镜生产监控中的数值误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信