REGULARITIES OF NUMBERS IN THE FIBONACHI TRIANGLE CONSTRUCTED ON THE DEGREE TRANSFORMATIONS OF A SQUARE THREE MEMBERS

P. Kosoboutskyy, Mariana Karkulovska, Yuliia Losynska
{"title":"REGULARITIES OF NUMBERS IN THE FIBONACHI TRIANGLE CONSTRUCTED ON THE DEGREE TRANSFORMATIONS OF A SQUARE THREE MEMBERS","authors":"P. Kosoboutskyy, Mariana Karkulovska, Yuliia Losynska","doi":"10.23939/cds2021.01.037","DOIUrl":null,"url":null,"abstract":"In this paper, it is shown that the Fibonacci triangle is formed from the elements of power transformations of a quadratic trinomial. It is binary structured by domains of rows of equal lengths, in which the sum of numbers forms a sequence of certain numbers. This sequence coincides with the transformed bisection of the classical sequence of Fibonacci numbers. The paper substantiates Pascal's rule for calculating elements in the lines of a Fibonacci triangle. The general relations of two forgings of numbers in lines of a triangle of Fibonacci for arbitrary values are received","PeriodicalId":270498,"journal":{"name":"Computer Design Systems. Theory and Practice","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Design Systems. Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/cds2021.01.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, it is shown that the Fibonacci triangle is formed from the elements of power transformations of a quadratic trinomial. It is binary structured by domains of rows of equal lengths, in which the sum of numbers forms a sequence of certain numbers. This sequence coincides with the transformed bisection of the classical sequence of Fibonacci numbers. The paper substantiates Pascal's rule for calculating elements in the lines of a Fibonacci triangle. The general relations of two forgings of numbers in lines of a triangle of Fibonacci for arbitrary values are received
基于三个平方元素的度数变换构造的fibonachi三角形中数字的规律性
本文证明了斐波那契三角形是由二次三叉的幂变换的元素构成的。它是由等长行的域构成的二进制结构,其中的数字和形成了特定数字的序列。这个数列与经典斐波那契数列的变换等分一致。本文证实了帕斯卡计算斐波那契三角形线中元素的规则。得到了任意值在斐波那契三角形直线上的两种数字锻造的一般关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信