Coordinate Descent Fuzzy Twin Support Vector Machine for Classification

Bin-Bin Gao, Jianjun Wang, Yao Wang, Chan-Yun Yang
{"title":"Coordinate Descent Fuzzy Twin Support Vector Machine for Classification","authors":"Bin-Bin Gao, Jianjun Wang, Yao Wang, Chan-Yun Yang","doi":"10.1109/ICMLA.2015.35","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel coordinate descent fuzzy twin SVM (CDFTSVM) for classification. The proposed CDFTSVM not only inherits the advantages of twin SVM but also leads to a rapid and robust classification results. Specifically, our CDFTSVM has two distinguished advantages: (1) An effective fuzzy membership function is produced for removing the noise incurred by the contaminant inputs. (2) A coordinate descent strategy with shrinking by active set is used to deal with the computational complexity brought by the high dimensional input. In addition, a series of simulation experiments are conducted to verify the performance of the CDFTSVM, which further supports our previous claims.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we develop a novel coordinate descent fuzzy twin SVM (CDFTSVM) for classification. The proposed CDFTSVM not only inherits the advantages of twin SVM but also leads to a rapid and robust classification results. Specifically, our CDFTSVM has two distinguished advantages: (1) An effective fuzzy membership function is produced for removing the noise incurred by the contaminant inputs. (2) A coordinate descent strategy with shrinking by active set is used to deal with the computational complexity brought by the high dimensional input. In addition, a series of simulation experiments are conducted to verify the performance of the CDFTSVM, which further supports our previous claims.
坐标下降模糊双支持向量机分类
本文提出了一种新的坐标下降模糊双支持向量机(CDFTSVM)分类方法。该方法不仅继承了双支持向量机的优点,而且具有快速、鲁棒的分类效果。具体来说,我们的CDFTSVM有两个显著的优点:(1)产生了一个有效的模糊隶属函数来去除污染物输入引起的噪声。(2)采用活动集收缩的坐标下降策略,解决了高维输入带来的计算复杂度问题。此外,还进行了一系列的仿真实验来验证CDFTSVM的性能,进一步支持了我们之前的说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信