Biclusters Based Visual Exploration of Multivariate Scientific Data

Xiangyang He, Y. Tao, Qirui Wang, Hai Lin
{"title":"Biclusters Based Visual Exploration of Multivariate Scientific Data","authors":"Xiangyang He, Y. Tao, Qirui Wang, Hai Lin","doi":"10.1109/SciVis.2018.8823605","DOIUrl":null,"url":null,"abstract":"This paper proposes a co-analysis framework based on biclusters, i.e., two subsets of variables and voxels with close scalar-value relationships, to guide the visual exploration process of multivariate data. We first automatically extract all meaningful biclusters, each of which only contains voxels with a similar scalar-value pattern over a subset of variables. These biclusters are organized according to their variable sets, and further grouped by a similarity metric to reduce redundancy and encourage diversity during visual exploration. Biclusters are visually represented in coordinated views to facilitate interactive exploration of multivariate data from the similarity between biclusters and the correlation of scalar values with different variables. Experiments demonstrate the effectiveness of our framework in exploring local relationships among variables, biclusters and scalar values in the data.","PeriodicalId":306021,"journal":{"name":"2018 IEEE Scientific Visualization Conference (SciVis)","volume":" 54","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Scientific Visualization Conference (SciVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SciVis.2018.8823605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a co-analysis framework based on biclusters, i.e., two subsets of variables and voxels with close scalar-value relationships, to guide the visual exploration process of multivariate data. We first automatically extract all meaningful biclusters, each of which only contains voxels with a similar scalar-value pattern over a subset of variables. These biclusters are organized according to their variable sets, and further grouped by a similarity metric to reduce redundancy and encourage diversity during visual exploration. Biclusters are visually represented in coordinated views to facilitate interactive exploration of multivariate data from the similarity between biclusters and the correlation of scalar values with different variables. Experiments demonstrate the effectiveness of our framework in exploring local relationships among variables, biclusters and scalar values in the data.
基于双聚类的多元科学数据可视化探索
本文提出了一种基于双聚类的协同分析框架,即具有密切标量值关系的变量和体素的两个子集,用于指导多变量数据的视觉探索过程。我们首先自动提取所有有意义的双聚类,每个双聚类只包含一个变量子集上具有相似标量值模式的体素。这些双聚类根据其变量集进行组织,并通过相似性度量进一步分组,以减少冗余并鼓励视觉探索过程中的多样性。双聚类在协调视图中可视化地表示,以便从双聚类之间的相似性和标量值与不同变量的相关性中促进多元数据的交互式探索。实验证明了我们的框架在探索数据中变量、双聚类和标量值之间的局部关系方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信