Energy-based decision engine for household human activity recognition

Anastasios Vafeiadis, T. Vafeiadis, Stelios Zikos, S. Krinidis, K. Votis, Dimitrios Giakoumis, D. Ioannidis, D. Tzovaras, Liming Luke Chen, R. Hamzaoui
{"title":"Energy-based decision engine for household human activity recognition","authors":"Anastasios Vafeiadis, T. Vafeiadis, Stelios Zikos, S. Krinidis, K. Votis, Dimitrios Giakoumis, D. Ioannidis, D. Tzovaras, Liming Luke Chen, R. Hamzaoui","doi":"10.1109/PERCOMW.2018.8480314","DOIUrl":null,"url":null,"abstract":"We propose a framework for energy-based human activity recognition in a household environment. We apply machine learning techniques to infer the state of household appliances from their energy consumption data and use rule- based scenarios that exploit these states to detect human activity. Our decision engine achieved a 99.1% accuracy for real-world data collected in the kitchens of two smart homes.","PeriodicalId":190096,"journal":{"name":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2018.8480314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a framework for energy-based human activity recognition in a household environment. We apply machine learning techniques to infer the state of household appliances from their energy consumption data and use rule- based scenarios that exploit these states to detect human activity. Our decision engine achieved a 99.1% accuracy for real-world data collected in the kitchens of two smart homes.
基于能量的家庭人类活动识别决策引擎
我们提出了一个家庭环境中基于能量的人类活动识别框架。我们应用机器学习技术从家用电器的能耗数据中推断其状态,并使用基于规则的场景来利用这些状态来检测人类活动。我们的决策引擎在两个智能家居厨房收集的真实数据中达到了99.1%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信