Evolutionary fuzzy system for architecture control in a constructive neural network

R. Calvo, M. Figueiredo, Eric A. Antonelo
{"title":"Evolutionary fuzzy system for architecture control in a constructive neural network","authors":"R. Calvo, M. Figueiredo, Eric A. Antonelo","doi":"10.1109/CIRA.2005.1554333","DOIUrl":null,"url":null,"abstract":"This work describes an evolutionary system to control the growth of a constructive neural network for autonomous navigation. A classifier system generates Takagi-Sugeno fuzzy rules and controls the architecture of a constructive neural network. The performance of the mobile robot guides the evolutionary learning mechanism. Experiments show the efficiency of the classifier fuzzy system for analyzing if it is worth inserting a new neuron into the architecture.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work describes an evolutionary system to control the growth of a constructive neural network for autonomous navigation. A classifier system generates Takagi-Sugeno fuzzy rules and controls the architecture of a constructive neural network. The performance of the mobile robot guides the evolutionary learning mechanism. Experiments show the efficiency of the classifier fuzzy system for analyzing if it is worth inserting a new neuron into the architecture.
基于构造神经网络的建筑控制进化模糊系统
这项工作描述了一个进化系统来控制一个用于自主导航的建设性神经网络的生长。分类器系统生成Takagi-Sugeno模糊规则并控制构造性神经网络的结构。移动机器人的性能指导着进化学习机制。实验表明,该分类器模糊系统在分析是否值得在结构中插入新的神经元方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信