Learning to select actions in starcraft with genetic algorithms

W. Hsu, Ying-ping Chen
{"title":"Learning to select actions in starcraft with genetic algorithms","authors":"W. Hsu, Ying-ping Chen","doi":"10.1109/TAAI.2016.7880180","DOIUrl":null,"url":null,"abstract":"In numerous different types of games, the real-time strategy (RTS) ones have always been the focus of gaming competitions, and in this regard, StarCraft can arguably be considered a classic real-time strategy game. Currently, most of the artificial intelligence (AI) players for real-time strategy games cannot reach or get close to the same intelligent level of their human opponents. In order to enhance the ability of Al players and hence improve the playability of games, in this study, we make an attempt to develop for StarCraft a mechanism learning to select an appropriate action to take according to the circumstance. Our empirical results show that action selection can be learned by AI players with the optimization capability of genetic algorithms and that cooperation among identical and/or different types of units is observed. The potential future work and possible research directions are discussed. The developed source code and the obtained results are released as open source.","PeriodicalId":159858,"journal":{"name":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2016.7880180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In numerous different types of games, the real-time strategy (RTS) ones have always been the focus of gaming competitions, and in this regard, StarCraft can arguably be considered a classic real-time strategy game. Currently, most of the artificial intelligence (AI) players for real-time strategy games cannot reach or get close to the same intelligent level of their human opponents. In order to enhance the ability of Al players and hence improve the playability of games, in this study, we make an attempt to develop for StarCraft a mechanism learning to select an appropriate action to take according to the circumstance. Our empirical results show that action selection can be learned by AI players with the optimization capability of genetic algorithms and that cooperation among identical and/or different types of units is observed. The potential future work and possible research directions are discussed. The developed source code and the obtained results are released as open source.
学习用遗传算法在星际争霸中选择行动
在许多不同类型的游戏中,即时战略游戏(RTS)一直是游戏竞争的焦点,在这方面,《星际争霸》可以说是一款经典的即时战略游戏。目前,大多数实时战略游戏的人工智能(AI)玩家无法达到或接近他们的人类对手的智能水平。为了提高人工智能玩家的能力,从而提高游戏的可玩性,在本研究中,我们尝试为《星际争霸》开发一种机制学习,根据情况选择适当的行动。我们的实证结果表明,人工智能玩家可以通过遗传算法的优化能力来学习行动选择,并且可以观察到相同和/或不同类型的单位之间的合作。讨论了今后可能的工作和可能的研究方向。开发的源代码和获得的结果作为开源发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信