Dynamic Hand Gesture Recognition using Sequence of Human Joint Relative Angles

S. Ishrak, Muhaimin Bin Munir, M. H. Kabir
{"title":"Dynamic Hand Gesture Recognition using Sequence of Human Joint Relative Angles","authors":"S. Ishrak, Muhaimin Bin Munir, M. H. Kabir","doi":"10.1109/ECCE57851.2023.10101606","DOIUrl":null,"url":null,"abstract":"Hand gestures have been used as a natural and spontaneous form of nonverbal communication since the beginning of humanity. The interest in this field of study is expanding as a result of recent research endeavors. The method for dynamic hand gesture identification in this paper is based on a 3D skeletal model and uses depth pictures. The series of spatiotemporal changes in the relative angles of several skeletal joints with respect to a reference joint is used to suggest a new gesture representation. Over a predetermined number of frames, a series of significant Joint Relative Angles (JRA) between two skeletal joints is calculated. We identified a collection of 12 dynamic gestures with 98.6% accuracy using machine learning algorithms to analyze this sequential data.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hand gestures have been used as a natural and spontaneous form of nonverbal communication since the beginning of humanity. The interest in this field of study is expanding as a result of recent research endeavors. The method for dynamic hand gesture identification in this paper is based on a 3D skeletal model and uses depth pictures. The series of spatiotemporal changes in the relative angles of several skeletal joints with respect to a reference joint is used to suggest a new gesture representation. Over a predetermined number of frames, a series of significant Joint Relative Angles (JRA) between two skeletal joints is calculated. We identified a collection of 12 dynamic gestures with 98.6% accuracy using machine learning algorithms to analyze this sequential data.
基于人体关节相对角度序列的动态手势识别
自人类诞生以来,手势就被用作一种自然自发的非语言交流形式。由于最近的研究努力,人们对这一研究领域的兴趣正在扩大。本文的动态手势识别方法基于三维骨骼模型并使用深度图像。几个骨骼关节相对于一个参考关节的相对角度的一系列时空变化被用来提出一种新的手势表示。在预定的帧数上,计算两个骨骼关节之间的一系列显著关节相对角(JRA)。我们使用机器学习算法以98.6%的准确率识别了12个动态手势的集合来分析这些序列数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信