Smallest and some new equiprojective polyhedra

M. Hasan, M.M. Hossain, S. Nusrat, A. López-Ortiz
{"title":"Smallest and some new equiprojective polyhedra","authors":"M. Hasan, M.M. Hossain, S. Nusrat, A. López-Ortiz","doi":"10.1109/ICCITECHN.2008.4803063","DOIUrl":null,"url":null,"abstract":"A convex polyhedron P is k-equiprojective if for all of its orthogonal projections, except those parallel to the faces of P, the number of vertices in the shadow boundary is k. Finding an algorithm to construct all equiprojective polyhedra is an open problem first posed in 1968. In this paper we give lower bounds on the value of k and the size of an equiprojective polyhedron. We prove that there is no 3- or 4-equiprojective polyhedra and a triangular prism is the only 5-equiprojective polyhedron. We also discover some new equiprojective polyhedra.","PeriodicalId":335795,"journal":{"name":"2008 11th International Conference on Computer and Information Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th International Conference on Computer and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2008.4803063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A convex polyhedron P is k-equiprojective if for all of its orthogonal projections, except those parallel to the faces of P, the number of vertices in the shadow boundary is k. Finding an algorithm to construct all equiprojective polyhedra is an open problem first posed in 1968. In this paper we give lower bounds on the value of k and the size of an equiprojective polyhedron. We prove that there is no 3- or 4-equiprojective polyhedra and a triangular prism is the only 5-equiprojective polyhedron. We also discover some new equiprojective polyhedra.
最小和一些新的等射影多面体
一个凸多面体P是k等射影的,如果它的所有正交投影,除了平行于P的面,阴影边界上的顶点数为k。寻找一种构造所有等射影多面体的算法是1968年首次提出的一个开放问题。本文给出了等射影多面体的大小和k值的下界。证明了不存在3、4等射影多面体,三角棱镜是唯一的5等射影多面体。我们还发现了一些新的等射影多面体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信