Obtaining Stable Iris Codes Exploiting Low-Rank Tensor Space and Spatial Structure Aware Refinement for Better Iris Recognition

K. B. Raja, Ramachandra Raghavendra, C. Busch
{"title":"Obtaining Stable Iris Codes Exploiting Low-Rank Tensor Space and Spatial Structure Aware Refinement for Better Iris Recognition","authors":"K. B. Raja, Ramachandra Raghavendra, C. Busch","doi":"10.1109/ICB45273.2019.8987266","DOIUrl":null,"url":null,"abstract":"The strength of iris recognition in terms of optimal biometric performance has been challenged by inevitable operational conditions in unconstrained scenarios. In this work we present a new approach for extracting stable iris weight maps to account for the noisy iris representation as a result of capture conditions and ineluctable segmentation errors. Traditional approaches to extract stable bits often ignore inter-code relations under the presence of multiple enrolment samples. Unlike previous works, we formulate the stable code extraction using tensor representation to exactly recover the low-rank non-noisy iris information using the multiple enrolment samples. Further, the proposed approach produces stable class specific (user specific) iris weight maps by eliminating the error bits due to sub-optimal segmentation or pupil dilation effects using spatial correspondence in a patch-wise manner. Through the set of experiments on two publicly available iris databases acquired under semi-constrained and unconstrained setting, we demonstrate the superiority for identification and verification performance over current state-ofthe-art algorithms. Rank−1 identification rate on CASIAv4 distance database is achieved at 93.3% and a verification accuracy of Genuine Match Rate (GMR) of 80% at False Match Rate(FMR) of 0.0001 indicating the applicability of proposed approach in operational scenarios.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The strength of iris recognition in terms of optimal biometric performance has been challenged by inevitable operational conditions in unconstrained scenarios. In this work we present a new approach for extracting stable iris weight maps to account for the noisy iris representation as a result of capture conditions and ineluctable segmentation errors. Traditional approaches to extract stable bits often ignore inter-code relations under the presence of multiple enrolment samples. Unlike previous works, we formulate the stable code extraction using tensor representation to exactly recover the low-rank non-noisy iris information using the multiple enrolment samples. Further, the proposed approach produces stable class specific (user specific) iris weight maps by eliminating the error bits due to sub-optimal segmentation or pupil dilation effects using spatial correspondence in a patch-wise manner. Through the set of experiments on two publicly available iris databases acquired under semi-constrained and unconstrained setting, we demonstrate the superiority for identification and verification performance over current state-ofthe-art algorithms. Rank−1 identification rate on CASIAv4 distance database is achieved at 93.3% and a verification accuracy of Genuine Match Rate (GMR) of 80% at False Match Rate(FMR) of 0.0001 indicating the applicability of proposed approach in operational scenarios.
利用低秩张量空间和空间结构感知改进获得稳定的虹膜编码,提高虹膜识别效果
在不受约束的情况下,虹膜识别在最佳生物识别性能方面的强度受到了不可避免的操作条件的挑战。在这项工作中,我们提出了一种新的方法来提取稳定的虹膜权重图,以解释由于捕获条件和不可避免的分割错误而导致的虹膜噪声表示。传统的稳定位提取方法往往忽略了存在多个登记样本时的码间关系。与以往的工作不同,我们使用张量表示来制定稳定的代码提取,以准确地恢复使用多个登记样本的低秩无噪声虹膜信息。此外,本文提出的方法通过消除由于次优分割或瞳孔扩张效应而产生的错误位,从而产生稳定的类特定(用户特定)虹膜权重图。通过在半约束和无约束设置下获得的两个公开可用的虹膜数据库上的一组实验,我们证明了识别和验证性能优于当前最先进的算法。在CASIAv4距离数据库上,Rank−1识别率达到93.3%,真实匹配率(GMR)为80%,虚假匹配率(FMR)为0.0001,表明该方法在操作场景中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信