R. Strykowsky, T. Brown, J. Chrzanowski, M. Cole, P. Heitzenroeder, G. Neilson, D. Rej, M. Viol
{"title":"Engineering cost & schedule lessons learned on NCSX","authors":"R. Strykowsky, T. Brown, J. Chrzanowski, M. Cole, P. Heitzenroeder, G. Neilson, D. Rej, M. Viol","doi":"10.1109/FUSION.2009.5226449","DOIUrl":null,"url":null,"abstract":"The National Compact Stellarator Experiment (NCSX) is designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL). The project was technically very challenging, primarily due to the complex component geometries and tight tolerances that were required. As the project matured these challenges manifested themselves through all phases of the project (i.e. design, R&D, fabrication and assembly). Although the project was not completed, several major work packages, comprising about 65% of the total estimated cost (excluding management and contingency), were completed, providing a data base of actual costs that can be analyzed to understand cost drivers. Technical factors that drove costs included the complex geometry, tight tolerances, material requirements, and performance requirements. Management factors included imposed annual funding constraints that throttled project cash flow, staff availability, and inadequate R&D. Understanding how requirements and design decisions drove cost through this top-down forensic cost analysis could provide valuable insight into the configuration and design of future Stellarators and other devices.","PeriodicalId":236460,"journal":{"name":"2009 23rd IEEE/NPSS Symposium on Fusion Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 23rd IEEE/NPSS Symposium on Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.2009.5226449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
The National Compact Stellarator Experiment (NCSX) is designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL). The project was technically very challenging, primarily due to the complex component geometries and tight tolerances that were required. As the project matured these challenges manifested themselves through all phases of the project (i.e. design, R&D, fabrication and assembly). Although the project was not completed, several major work packages, comprising about 65% of the total estimated cost (excluding management and contingency), were completed, providing a data base of actual costs that can be analyzed to understand cost drivers. Technical factors that drove costs included the complex geometry, tight tolerances, material requirements, and performance requirements. Management factors included imposed annual funding constraints that throttled project cash flow, staff availability, and inadequate R&D. Understanding how requirements and design decisions drove cost through this top-down forensic cost analysis could provide valuable insight into the configuration and design of future Stellarators and other devices.