Flexural behavior of 3D printed bio-inspired interlocking suture structures

S. Wickramasinghe, T. Do, P. Tran
{"title":"Flexural behavior of 3D printed bio-inspired interlocking suture structures","authors":"S. Wickramasinghe, T. Do, P. Tran","doi":"10.18063/msam.v1i2.9","DOIUrl":null,"url":null,"abstract":"Additive manufacturing has allowed producing various complex structures inspired by natural materials. In this research, the bio-inspired suture structure was 3D printed using the fused deposition modeling printing technique to study its bending response behavior. Suture is one of the most commonly found structures in biological bodies. The primary purpose of this structure in nature is to improve flexibility by absorbing energy without causing permeant damage to the biological structure. An interesting discovery of the suture joint in diabolical ironclad beetle has given a great opportunity to further study the behavior of these natural suture designs. Inspired by the elliptical shape and the interlocking features of this suture, specimens were designed and 3D printed using polylactic acid thermoplastic polymer. A three-point bending test was then conducted to analyze the flexural behavior of each suture design, while digital image correlation and numerical simulation were performed to capture the insights of deformation process.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Additive manufacturing has allowed producing various complex structures inspired by natural materials. In this research, the bio-inspired suture structure was 3D printed using the fused deposition modeling printing technique to study its bending response behavior. Suture is one of the most commonly found structures in biological bodies. The primary purpose of this structure in nature is to improve flexibility by absorbing energy without causing permeant damage to the biological structure. An interesting discovery of the suture joint in diabolical ironclad beetle has given a great opportunity to further study the behavior of these natural suture designs. Inspired by the elliptical shape and the interlocking features of this suture, specimens were designed and 3D printed using polylactic acid thermoplastic polymer. A three-point bending test was then conducted to analyze the flexural behavior of each suture design, while digital image correlation and numerical simulation were performed to capture the insights of deformation process.
3D打印仿生联锁缝合结构的弯曲行为
受天然材料的启发,增材制造可以制造出各种复杂的结构。在本研究中,采用熔融沉积建模打印技术对仿生缝合结构进行3D打印,研究其弯曲响应行为。缝线是生物体内最常见的结构之一。这种结构在自然界中的主要目的是通过吸收能量来提高灵活性,而不会对生物结构造成潜在的损害。一个有趣的发现,在恶魔铁甲甲虫缝合线关节为进一步研究这些自然缝合线设计的行为提供了很好的机会。受椭圆形状和这种缝合线的互锁特征的启发,使用聚乳酸热塑性聚合物设计和3D打印样品。然后进行三点弯曲试验,分析每种缝线设计的弯曲行为,同时进行数字图像相关和数值模拟,以捕捉变形过程的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信