Penentuan OOIP Berdasarkan Pemodelan Geologi dan Reservoir di Daerah Tanisha Cekungan Sumatra Selatan

Nila Rahayu, Ratnayu Sitaresmi, Moeh. Ali Jambak
{"title":"Penentuan OOIP Berdasarkan Pemodelan Geologi dan Reservoir di Daerah Tanisha Cekungan Sumatra Selatan","authors":"Nila Rahayu, Ratnayu Sitaresmi, Moeh. Ali Jambak","doi":"10.30588/JO.V2I2.401","DOIUrl":null,"url":null,"abstract":"Perkembangan teknologi dapat dimanfaatkan untuk mengetahui karakteristik reservoir sebelum dilakukannya kegiatan eksplorasi dan eksploitasi. Salah satunya dengan pemodelan geologi dan pemodelan reservoir untuk mendapatkan gambaran bentuk bawah permukaan, karakteristik reservoir, dan OOIP.  Analisis data log dan interpretasi geologi dilakukan untuk mendapatkan informasi lingkungan pengendapan, marker lapisan, dan bentukan struktur reservoir yang digunakan sebagai dasar pembuatan model geologi. Analisis petrofisik akan memberikan informasi mengenai karakteristik batuan reservoir. Untuk mendapatkan model reservoir, hasil analisis petrofisik akan didistribusikan pada model geologi. Kemudian penentuan OOIP dapat dihitung dengan menggunakan metode volumetrik. Reservoir batupasir sudah terbukti menjadi reservoir produktif di berbagai lapangan migas, seperti reservoir batupasir pada Formasi Talang Akar di Lapangan Sungai Lilin. Terdapat enam lapisan yang menjadi obyek penelitian pada Formasi Talang Akar yaitu lapisan D1, D2, E1, E2, F, dan H yang diendapkan pada lingkungan delta plain–delta front terlihat dari pola log yang berkembang yaitu funnel shape, serrated shape, dan bell shape. Perbedaan lingkungan pengendapan akan mempengaruhi geometri dan karakteristik reservoir. Didapatkan nilai cut-off untuk Vcl ≤0.40, porositas ≥0.10 dan saturasi air ≤0.7. Hasil analisis petrofisika kemudian didistribusikan pada model geologi dengan metode Sequential Gaussian Simulation , dimana penyebaran lingkungan pengendapan menjadi arahan dasar penyebaran properti reservoir. Perhitungan OOIP pada enam lapisan di Formasi Talang Akar berdasarkan pemodelan reservoir sebesar 8,387 MSTB, dengan lapisan menarik terdapat pada lapisan E2 2,340 MSTB. Technological developments can be utilized to determine reservoir characteristics prior to exploration and exploitation activities. One of them is by geological modeling and reservoir modeling to get a picture of subsurface shapes, reservoir characteristics, and OOIP. Log data analysis and geological interpretation were carried out to obtain information on depositional environments, layer markers, and reservoir structure formations that were used as the basis for making geological models. Petrophysical analysis will provide information about reservoir rock characteristics. To get the reservoir model, the results of the petrophysical analysis will be distributed to the geological model. Then the determination of OOIP can be calculated using the volumetric method. Sandstone reservoirs have proven to be productive reservoirs in various oil and gas fields, such as sandstone reservoirs in the Talang Akar Formation in Sungai Lilin Field. There are six layers that are the object of research in the Talang Root Formation, namely layers D1, D2, E1, E2, F, and H which are deposited in the plain-delta front delta environment as seen from the developing log pattern, namely funnel shape, serrated shape, and bell shape. The difference in depositional environments will affect the geometry and characteristics of the reservoir. Obtained cut-off values for Vcl ≤0.40, porosity ≥0.10 and water saturation ≤0.7. The results of the petrophysical analysis are then distributed to the geological model using the Sequential Gaussian Simulation method, where the spread of the depositional environment is the basis for spreading reservoir properties. The OOIP calculation for the six layers in the Talang Akar Formation is based on reservoir modeling of 8,387 MSTB, with an interesting layer found at the E2 layer 2,340 MSTB.","PeriodicalId":328838,"journal":{"name":"Jurnal Offshore: Oil, Production Facilities and Renewable Energy","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Offshore: Oil, Production Facilities and Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30588/JO.V2I2.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Perkembangan teknologi dapat dimanfaatkan untuk mengetahui karakteristik reservoir sebelum dilakukannya kegiatan eksplorasi dan eksploitasi. Salah satunya dengan pemodelan geologi dan pemodelan reservoir untuk mendapatkan gambaran bentuk bawah permukaan, karakteristik reservoir, dan OOIP.  Analisis data log dan interpretasi geologi dilakukan untuk mendapatkan informasi lingkungan pengendapan, marker lapisan, dan bentukan struktur reservoir yang digunakan sebagai dasar pembuatan model geologi. Analisis petrofisik akan memberikan informasi mengenai karakteristik batuan reservoir. Untuk mendapatkan model reservoir, hasil analisis petrofisik akan didistribusikan pada model geologi. Kemudian penentuan OOIP dapat dihitung dengan menggunakan metode volumetrik. Reservoir batupasir sudah terbukti menjadi reservoir produktif di berbagai lapangan migas, seperti reservoir batupasir pada Formasi Talang Akar di Lapangan Sungai Lilin. Terdapat enam lapisan yang menjadi obyek penelitian pada Formasi Talang Akar yaitu lapisan D1, D2, E1, E2, F, dan H yang diendapkan pada lingkungan delta plain–delta front terlihat dari pola log yang berkembang yaitu funnel shape, serrated shape, dan bell shape. Perbedaan lingkungan pengendapan akan mempengaruhi geometri dan karakteristik reservoir. Didapatkan nilai cut-off untuk Vcl ≤0.40, porositas ≥0.10 dan saturasi air ≤0.7. Hasil analisis petrofisika kemudian didistribusikan pada model geologi dengan metode Sequential Gaussian Simulation , dimana penyebaran lingkungan pengendapan menjadi arahan dasar penyebaran properti reservoir. Perhitungan OOIP pada enam lapisan di Formasi Talang Akar berdasarkan pemodelan reservoir sebesar 8,387 MSTB, dengan lapisan menarik terdapat pada lapisan E2 2,340 MSTB. Technological developments can be utilized to determine reservoir characteristics prior to exploration and exploitation activities. One of them is by geological modeling and reservoir modeling to get a picture of subsurface shapes, reservoir characteristics, and OOIP. Log data analysis and geological interpretation were carried out to obtain information on depositional environments, layer markers, and reservoir structure formations that were used as the basis for making geological models. Petrophysical analysis will provide information about reservoir rock characteristics. To get the reservoir model, the results of the petrophysical analysis will be distributed to the geological model. Then the determination of OOIP can be calculated using the volumetric method. Sandstone reservoirs have proven to be productive reservoirs in various oil and gas fields, such as sandstone reservoirs in the Talang Akar Formation in Sungai Lilin Field. There are six layers that are the object of research in the Talang Root Formation, namely layers D1, D2, E1, E2, F, and H which are deposited in the plain-delta front delta environment as seen from the developing log pattern, namely funnel shape, serrated shape, and bell shape. The difference in depositional environments will affect the geometry and characteristics of the reservoir. Obtained cut-off values for Vcl ≤0.40, porosity ≥0.10 and water saturation ≤0.7. The results of the petrophysical analysis are then distributed to the geological model using the Sequential Gaussian Simulation method, where the spread of the depositional environment is the basis for spreading reservoir properties. The OOIP calculation for the six layers in the Talang Akar Formation is based on reservoir modeling of 8,387 MSTB, with an interesting layer found at the E2 layer 2,340 MSTB.
技术发展可以利用在探索和开发活动之前了解水库的特征。一种方法是地质建模和水库建模,以了解地表下的形状、水库的特征和淤泥特征。分析日志数据和地质解释是为了获取沉积、地层标记和水库结构的信息,这些信息是地质建模的基础。物理岩石分析将提供关于水库岩石特征的信息。为了获得水库模型,物理分析结果将分发给地质模型。然后OOIP测定可以用体积法来计算。沙岩水库已经被证明是不同沼泽中生产力的水库,就像蜡河道根系中的砂岩水库一样。根轴形成的研究对象有六层,其中一层是D1、D2、E1、E2、F和H,沉积在plain三角洲环境中——从进化的漏斗形、serrated shape和bell shape等日志模式中可以看到前端。不同的沉积环境将影响水库的几何和特征。获得Vcl的界限值≤0。40摄氏度,孔隙度≥0。10,饱和水≤0。7。然后,石油物理学分析的结果以地质拟像的顺序分布在模型中,确定了沉降环境的分散,这是水库特性分散的基本方向。基于储存水库模型8.387 MSTB的六层钻孔计算,有趣的岩层位于E2 2.2.340 MSTB层。技术开发可以实用地探索和探索活动的水库特点。其中一个是通过地质建模和水库建模来获得一幅亚表面形状、特征水库和淤泥的图片。分析和地质解释数据日志令人感兴趣的是揭示用于进行地质模拟基地的信息、地层标记和水库结构的结构。岩石物理分析将提供关于水库岩石特征的信息。为了建立水库模型,石油分析的结果将被分发给地质模型。然后,OOIP的决定可以用体积测量的方法来计算。沙石蓄水池保证生产不同种类的石油和天然气场的蓄水池,这样的沙石水库在蜡场小溪形成的根部。在块根形成、namely layers D1、D2、E1、E2、F和H中,研究的对象存在于开发环境前三角洲环境中,从开发日志模式、namely funnel shape、serrated shape和bell shape中。区域环境的差异将影响水库的几何和特征。界限获得价值观为Vcl≤0。40摄氏度,porosity≥0。10和水saturation≤0。7。石油理算分析的结果,然后通过化学模拟方法将其分散到地质模型中,在这些方法中,区域环境的扩散是属性水库的基础。基于8.387 MSTB的水库模型的钻孔计算,在E2层2.340 MSTB发现了一个有趣的层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信