Stereoscopic Dataset from A Video Game: Detecting Converged Axes and Perspective Distortions in S3D Videos

K. Malyshev, S. Lavrushkin, D. Vatolin
{"title":"Stereoscopic Dataset from A Video Game: Detecting Converged Axes and Perspective Distortions in S3D Videos","authors":"K. Malyshev, S. Lavrushkin, D. Vatolin","doi":"10.1109/IC3D51119.2020.9376375","DOIUrl":null,"url":null,"abstract":"This paper presents a method for generating stereoscopic or multi-angle video frames using a computer game (Grand Theft Auto V). We developed a mod that captures synthetic frames allows us to create geometric distortions like those that occur in a real video. These distortions are the main cause of viewer discomfort when watching 3D movies. Datasets generated in this way can aid in solving problems related to machine-learning-based assessment of stereoscopic- or multi-angle-video quality. We trained a convolutional neural network to evaluate perspective distortions and converged camera axes in stereoscopic video, then tested it on real 3D movies. The neural network discovered multiple examples of these distortions.","PeriodicalId":159318,"journal":{"name":"2020 International Conference on 3D Immersion (IC3D)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D51119.2020.9376375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method for generating stereoscopic or multi-angle video frames using a computer game (Grand Theft Auto V). We developed a mod that captures synthetic frames allows us to create geometric distortions like those that occur in a real video. These distortions are the main cause of viewer discomfort when watching 3D movies. Datasets generated in this way can aid in solving problems related to machine-learning-based assessment of stereoscopic- or multi-angle-video quality. We trained a convolutional neural network to evaluate perspective distortions and converged camera axes in stereoscopic video, then tested it on real 3D movies. The neural network discovered multiple examples of these distortions.
来自视频游戏的立体数据集:在S3D视频中检测聚合轴和透视扭曲
本文介绍了一种使用电脑游戏(侠盗猎车手V)生成立体或多角度视频帧的方法。我们开发了一个捕获合成帧的模型,使我们能够创建像真实视频中那样的几何扭曲。这些扭曲是观众在观看3D电影时感到不适的主要原因。以这种方式生成的数据集可以帮助解决与基于机器学习的立体或多角度视频质量评估相关的问题。我们训练了一个卷积神经网络来评估立体视频中的视角扭曲和收敛的相机轴,然后在真实的3D电影中进行了测试。神经网络发现了这些扭曲的多个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信