Online Educational Resources Classification Using Visual Features

Xiangping Chen, Yancheng Chen, Yonghao Long, Yongsheng Rao, Hao Guan, Mouguang Lin
{"title":"Online Educational Resources Classification Using Visual Features","authors":"Xiangping Chen, Yancheng Chen, Yonghao Long, Yongsheng Rao, Hao Guan, Mouguang Lin","doi":"10.1109/ICDH.2018.00038","DOIUrl":null,"url":null,"abstract":"With the promotion of the Internet, people can easily retrieve various kinds of education resources on the web. However, current education resources sharing platforms do not support the resources retrieval through the visual information. Therefore, we need to classify the resources which are related to visual characteristics into several categories. In this paper, we propose a novel classification method for resources on Netpad[ http://www.netpad.net.cn/]. We extract the important visual features including graphics features and text features. Then, we use the random forest algorithm to train a valuable model. The results of the experiments indicate that, using graphics features and text features, most of the data are classified correctly, which means that our proposed method can solve the classification problem of Netpad effectively.","PeriodicalId":117854,"journal":{"name":"2018 7th International Conference on Digital Home (ICDH)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Digital Home (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2018.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the promotion of the Internet, people can easily retrieve various kinds of education resources on the web. However, current education resources sharing platforms do not support the resources retrieval through the visual information. Therefore, we need to classify the resources which are related to visual characteristics into several categories. In this paper, we propose a novel classification method for resources on Netpad[ http://www.netpad.net.cn/]. We extract the important visual features including graphics features and text features. Then, we use the random forest algorithm to train a valuable model. The results of the experiments indicate that, using graphics features and text features, most of the data are classified correctly, which means that our proposed method can solve the classification problem of Netpad effectively.
基于视觉特征的在线教育资源分类
随着互联网的推广,人们可以很容易地在网上检索到各种教育资源。然而,目前的教育资源共享平台并不支持通过可视化信息进行资源检索。因此,我们需要将与视觉特征相关的资源分为几类。在本文中,我们提出了一种新的Netpad资源分类方法[http://www.netpad.net.cn/]。我们提取了重要的视觉特征,包括图形特征和文本特征。然后,我们使用随机森林算法训练一个有价值的模型。实验结果表明,利用图形特征和文本特征对大部分数据进行了正确的分类,表明本文提出的方法可以有效地解决Netpad的分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信