{"title":"An algorithm for facial mask area repair based upon deep learning","authors":"Haoyu Zhang","doi":"10.1117/12.2644299","DOIUrl":null,"url":null,"abstract":"Due to the impact of Corona Virus Disease 2019 (COVID-19), facial mask has become a necessary protective measure for people going out in the last two years. One's mouth and nose are covered to suppress the spread of the virus, which brings a huge challenge for face verification. Whereas some existing image inpainting methods cannot repair the covered area well, which reduces the accuracy of face verification. In this paper, an algorithm is proposed to repair the area covered by facial mask to restore the identity information for face authentication. The proposed algorithm consists of an image inpainting network and a face verification network. Among them, in image inpainting network, to begin with, two discriminators, namely global discriminator and local discriminator. Then Resnet blocks are employed in two discriminators, which is used to retain more feature information. Experimental results show that the proposed method generates fewer artifacts and receives the higher Rank-1 accuracy than other methods in discussion.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the impact of Corona Virus Disease 2019 (COVID-19), facial mask has become a necessary protective measure for people going out in the last two years. One's mouth and nose are covered to suppress the spread of the virus, which brings a huge challenge for face verification. Whereas some existing image inpainting methods cannot repair the covered area well, which reduces the accuracy of face verification. In this paper, an algorithm is proposed to repair the area covered by facial mask to restore the identity information for face authentication. The proposed algorithm consists of an image inpainting network and a face verification network. Among them, in image inpainting network, to begin with, two discriminators, namely global discriminator and local discriminator. Then Resnet blocks are employed in two discriminators, which is used to retain more feature information. Experimental results show that the proposed method generates fewer artifacts and receives the higher Rank-1 accuracy than other methods in discussion.