While, In General, Uncertainty Quantification (UQ) Is NP-Hard, Many Practical UQ Problems Can Be Made Feasible

Ander Gray, S. Ferson, O. Kosheleva, V. Kreinovich
{"title":"While, In General, Uncertainty Quantification (UQ) Is NP-Hard, Many Practical UQ Problems Can Be Made Feasible","authors":"Ander Gray, S. Ferson, O. Kosheleva, V. Kreinovich","doi":"10.1109/SSCI50451.2021.9659990","DOIUrl":null,"url":null,"abstract":"In general, many general mathematical formulations of uncertainty quantification problems are NP-hard, meaning that (unless it turned out that P = NP) no feasible algorithm is possible that would always solve these problems. In this paper, we argue that if we restrict ourselves to practical problems, then the correspondingly restricted problems become feasible - namely, they can be solved by using linear programming techniques.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In general, many general mathematical formulations of uncertainty quantification problems are NP-hard, meaning that (unless it turned out that P = NP) no feasible algorithm is possible that would always solve these problems. In this paper, we argue that if we restrict ourselves to practical problems, then the correspondingly restricted problems become feasible - namely, they can be solved by using linear programming techniques.
一般来说,不确定性量化(UQ)是np困难的,但许多实际的UQ问题是可行的
一般来说,许多不确定性量化问题的一般数学公式是NP困难的,这意味着(除非P = NP)没有可行的算法可能总是解决这些问题。在本文中,我们认为,如果我们将自己限制在实际问题中,那么相应的限制问题就变得可行-即,它们可以通过使用线性规划技术来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信