Harmonic envelope prediction for realistic speech synthesis using kernel interpolation

P.-A. Fournier, Jean-Jules Brault
{"title":"Harmonic envelope prediction for realistic speech synthesis using kernel interpolation","authors":"P.-A. Fournier, Jean-Jules Brault","doi":"10.1109/IJCNN.2005.1556217","DOIUrl":null,"url":null,"abstract":"Harmonic and noise diphone concatenation is a proven method to obtain high-quality speech synthesis, but cannot be used when the basis corpus does not contain all the diphones needed. We propose a method to complete an individual's corpus using examples from other corpora. Parametrisation of five vowels from different speakers is done with an harmonic and noise model (HNM). We use multi-frame analysis (MFA) and smoothing kernels to estimate the harmonic power spectrum envelopes. Different kernels are compared to predict the harmonic envelopes of vowels using training data. We use euclidian distance to measure similarity between the real envelopes and the predicted ones. Synthesis of the interpolated vowels are then performed using learned optimal parameters. Our results show Gaussian kernels can achieve a 1.8 dB (34.4%) reduction of harmonic distorsion compared to the mean harmonic envelope estimator. As far as we know, there is no other literature on phoneme prediction for realistic speech synthesis.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"19 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harmonic and noise diphone concatenation is a proven method to obtain high-quality speech synthesis, but cannot be used when the basis corpus does not contain all the diphones needed. We propose a method to complete an individual's corpus using examples from other corpora. Parametrisation of five vowels from different speakers is done with an harmonic and noise model (HNM). We use multi-frame analysis (MFA) and smoothing kernels to estimate the harmonic power spectrum envelopes. Different kernels are compared to predict the harmonic envelopes of vowels using training data. We use euclidian distance to measure similarity between the real envelopes and the predicted ones. Synthesis of the interpolated vowels are then performed using learned optimal parameters. Our results show Gaussian kernels can achieve a 1.8 dB (34.4%) reduction of harmonic distorsion compared to the mean harmonic envelope estimator. As far as we know, there is no other literature on phoneme prediction for realistic speech synthesis.
基于核插值的现实语音合成谐波包络预测
谐波和噪声双声道拼接是一种获得高质量语音合成的有效方法,但当基语料库中不包含所需的所有双声道时,就不能使用该方法。我们提出了一种使用其他语料库中的示例来完成个人语料库的方法。通过谐波和噪声模型(HNM)对来自不同扬声器的五个元音进行参数化。我们使用多帧分析(MFA)和平滑核来估计谐波功率谱包络。利用训练数据对不同的核函数进行比较,预测元音的谐波包络。我们使用欧几里得距离来衡量真实包络和预测包络之间的相似性。然后使用学习到的最优参数进行插值元音的合成。我们的研究结果表明,与平均谐波包络估计相比,高斯核可以实现1.8 dB(34.4%)的谐波失真降低。据我们所知,目前还没有其他关于现实语音合成的音位预测的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信