Analisis Transaksi Konsumen Bidang Data Mining Menggunakan Algoritma Apriori Untuk Rekomendasi Bundling Produk Pada 212 Mart Kota Lhokseumawe

Mutasar Mutasar, Chaeroen Niesa
{"title":"Analisis Transaksi Konsumen Bidang Data Mining Menggunakan Algoritma Apriori Untuk Rekomendasi Bundling Produk Pada 212 Mart Kota Lhokseumawe","authors":"Mutasar Mutasar, Chaeroen Niesa","doi":"10.51179/tika.v6i02.463","DOIUrl":null,"url":null,"abstract":"212 Mart Lhokseumawe yang bernaung di bawah PT. Syirkah Mubarakah Lhokseumawe adalah sebuah usaha ritel yang baru saja dirintis. Dalam operasionalnya masih banyak kendala yang dihadapi sehingga omzet penjualan harian masih jauh dari yang diharapkan, namun peneliti ingin menawarkan sebuah solusi untuk meningkatkan penjualan produk dengan teknik Bundling Produk yang masih diterapkan secara konvensional. Tujuan dari penelitian ini adalah merancang dan membangun sebuah aplikasi data mining untuk memprediksi hasil penjualan barang yang diminati konsumen pada 212Mart Kota Lhokseumawe dengan menggunakan algoritma apriori berdasarkan data transaksi penjualan. Algoritma Apriori adalah salah suatu algoritma yang melakukan pencarian frequent itemset dengan menggunakan teknik association rule. Algoritma Apriori menggunakan pengetahuan frekuensi atribut yang telah diketahui sebelumnya untuk memproses informasi selanjutnya. Pada algoritma Apriori menentukan kandidat yang mungkin muncul dengan cara memperhatikan minimum support dan minimum confidence. Implementasi dari hasil pengolahan data transaksi penjualan diproses dengan algoritma apriori sehingga akan menghasilkan sebuah output penawaran Bundling Barang kepada konsumen dan menawarkan harga yang relative lebih ekonomis. Proses data mining ini melalui tahapan pengenalan pola perilaku dan transaksi konsumen pada 212 Mart Kota Lhokseumawe","PeriodicalId":141239,"journal":{"name":"Jurnal TIKA","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal TIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51179/tika.v6i02.463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

212 Mart Lhokseumawe yang bernaung di bawah PT. Syirkah Mubarakah Lhokseumawe adalah sebuah usaha ritel yang baru saja dirintis. Dalam operasionalnya masih banyak kendala yang dihadapi sehingga omzet penjualan harian masih jauh dari yang diharapkan, namun peneliti ingin menawarkan sebuah solusi untuk meningkatkan penjualan produk dengan teknik Bundling Produk yang masih diterapkan secara konvensional. Tujuan dari penelitian ini adalah merancang dan membangun sebuah aplikasi data mining untuk memprediksi hasil penjualan barang yang diminati konsumen pada 212Mart Kota Lhokseumawe dengan menggunakan algoritma apriori berdasarkan data transaksi penjualan. Algoritma Apriori adalah salah suatu algoritma yang melakukan pencarian frequent itemset dengan menggunakan teknik association rule. Algoritma Apriori menggunakan pengetahuan frekuensi atribut yang telah diketahui sebelumnya untuk memproses informasi selanjutnya. Pada algoritma Apriori menentukan kandidat yang mungkin muncul dengan cara memperhatikan minimum support dan minimum confidence. Implementasi dari hasil pengolahan data transaksi penjualan diproses dengan algoritma apriori sehingga akan menghasilkan sebuah output penawaran Bundling Barang kepada konsumen dan menawarkan harga yang relative lebih ekonomis. Proses data mining ini melalui tahapan pengenalan pola perilaku dan transaksi konsumen pada 212 Mart Kota Lhokseumawe
消费者数据数据交易分析使用杏算法分析212超市的Bundling产品推荐
212 Mart lhoumawe位于有限公司的siirkah muirkah是一家刚刚起步的零售业。在操作中仍存在许多障碍,因此日常销售的营业额仍远未达到预期的水平,但研究人员希望提供一种方法,用传统的绑定技术改进产品销售。这项研究的目的是设计和构建一款数据挖掘应用程序,使用基于销售数据的杏算法来预测lhoumawe市212Mart消费者感兴趣的销售结果。四月算法是一种利用协会规则技术进行频率转换搜索的算法之一。四月算法使用已知的属性频率知识来处理进一步的信息。在四月算法中,确定可能出现的候选人是考虑最低的支持和最低的信心。利用四月算法对销售交易数据进行处理的执行,将导致大量货物的产出,并提供更经济的相关价格。数据挖掘是通过212市场市212位市场行为模式和消费者交易的阶段进行的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信