GCQW: A Quantum Walk Model for Predicting Missing Links of Complex Networks

Wenbing Liang, Fei Yan, Abdullah M. Iliyasu, Ahmed S. Salama
{"title":"GCQW: A Quantum Walk Model for Predicting Missing Links of Complex Networks","authors":"Wenbing Liang, Fei Yan, Abdullah M. Iliyasu, Ahmed S. Salama","doi":"10.1109/icicse55337.2022.9828952","DOIUrl":null,"url":null,"abstract":"Link prediction remains a challenging pursuit in existing complex networks. Our study proposes a Grover coin driven quantum walk (GCQW) model for prediction of missing edges on complex networks. The GCQW model uses observed probabilities of common neighbours of two nodes as similarity between the nodes. Furthermore, each walk step of the proposed model is determined by a three degree of influence rule. Results of experiments based on the area under the receiver operating characteristic curve (AUC) index demonstrate the proposed model’s performance in eight real complex networks outperforms nine conventional comparison algorithms. Outcomes show that even when the ratio of testing to training is set in the range 0.1∼0.5, our GCQW model maintained a stable and competitive performance in terms of the AUC index. The proposed GCQW model will be expectedly applied in function modular mining of protein-protein interaction networks and friend recommendation of social media.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicse55337.2022.9828952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Link prediction remains a challenging pursuit in existing complex networks. Our study proposes a Grover coin driven quantum walk (GCQW) model for prediction of missing edges on complex networks. The GCQW model uses observed probabilities of common neighbours of two nodes as similarity between the nodes. Furthermore, each walk step of the proposed model is determined by a three degree of influence rule. Results of experiments based on the area under the receiver operating characteristic curve (AUC) index demonstrate the proposed model’s performance in eight real complex networks outperforms nine conventional comparison algorithms. Outcomes show that even when the ratio of testing to training is set in the range 0.1∼0.5, our GCQW model maintained a stable and competitive performance in terms of the AUC index. The proposed GCQW model will be expectedly applied in function modular mining of protein-protein interaction networks and friend recommendation of social media.
GCQW:预测复杂网络缺失链路的量子行走模型
在现有的复杂网络中,链路预测仍然是一个具有挑战性的问题。我们的研究提出了一个格罗弗币驱动的量子行走(GCQW)模型,用于预测复杂网络上的缺失边。GCQW模型使用观测到的两个节点共同邻居的概率作为节点之间的相似性。此外,该模型的每一步行走都由一个三度影响规则确定。基于接收者工作特征曲线(AUC)指数下面积的实验结果表明,该模型在8个真实复杂网络中的性能优于9种传统的比较算法。结果表明,即使将测试与训练的比率设置在0.1 ~ 0.5范围内,我们的GCQW模型在AUC指数方面仍保持稳定和有竞争力的表现。本文提出的GCQW模型有望应用于蛋白质-蛋白质相互作用网络的功能模块化挖掘和社交媒体的好友推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信