Parabolic Systems with measurable coefficients in weighted Sobolev spaces

Doyoon Kim, Kyeong-Hun Kim, Kijung Lee
{"title":"Parabolic Systems with measurable coefficients in weighted Sobolev spaces","authors":"Doyoon Kim, Kyeong-Hun Kim, Kijung Lee","doi":"10.3934/cpaa.2022062","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We present a weighted <inline-formula><tex-math id=\"M1\">\\begin{document}$ L_p $\\end{document}</tex-math></inline-formula>-theory of parabolic systems on a half space <inline-formula><tex-math id=\"M2\">\\begin{document}$ {\\mathbb{R}}^d_+ $\\end{document}</tex-math></inline-formula>. The leading coefficients are assumed to be only measurable in time <inline-formula><tex-math id=\"M3\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula> and have small bounded mean oscillations (BMO) with respect to the spatial variables <inline-formula><tex-math id=\"M4\">\\begin{document}$ x $\\end{document}</tex-math></inline-formula>, and the lower order coefficients are allowed to blow up near the boundary.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a weighted \begin{document}$ L_p $\end{document}-theory of parabolic systems on a half space \begin{document}$ {\mathbb{R}}^d_+ $\end{document}. The leading coefficients are assumed to be only measurable in time \begin{document}$ t $\end{document} and have small bounded mean oscillations (BMO) with respect to the spatial variables \begin{document}$ x $\end{document}, and the lower order coefficients are allowed to blow up near the boundary.

加权Sobolev空间中系数可测的抛物系统
We present a weighted \begin{document}$ L_p $\end{document}-theory of parabolic systems on a half space \begin{document}$ {\mathbb{R}}^d_+ $\end{document}. The leading coefficients are assumed to be only measurable in time \begin{document}$ t $\end{document} and have small bounded mean oscillations (BMO) with respect to the spatial variables \begin{document}$ x $\end{document}, and the lower order coefficients are allowed to blow up near the boundary.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信