Study of feature word extraction and cluster in Chinese product reviews

Ya-Ming Shen, Guang Chen
{"title":"Study of feature word extraction and cluster in Chinese product reviews","authors":"Ya-Ming Shen, Guang Chen","doi":"10.1109/ICNIDC.2016.7974614","DOIUrl":null,"url":null,"abstract":"Evaluation system is the basis of product reviews mining. This paper introduces an unsupervised method to establish product evaluation system based on aspects. We extract product feature words with the syntax parser and achieve 72.33% F-value. This paper analyzes the mobile reviews, clusters the labeled feature phrases in the SemEval task and achieves 71.5% precision, which verifies the effectiveness of the method. Finally we make mobile features' clustering result visible and draw some conclusions by analyzing the relationship between different aspects.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluation system is the basis of product reviews mining. This paper introduces an unsupervised method to establish product evaluation system based on aspects. We extract product feature words with the syntax parser and achieve 72.33% F-value. This paper analyzes the mobile reviews, clusters the labeled feature phrases in the SemEval task and achieves 71.5% precision, which verifies the effectiveness of the method. Finally we make mobile features' clustering result visible and draw some conclusions by analyzing the relationship between different aspects.
中文产品评论中的特征词提取与聚类研究
评价体系是产品评价挖掘的基础。介绍了一种基于方面的产品评价体系的无监督建立方法。我们使用语法分析器提取产品特征词,f值达到72.33%。本文对移动评论进行分析,对SemEval任务中标注的特征短语进行聚类,准确率达到71.5%,验证了该方法的有效性。最后将移动特征聚类结果可视化,并通过分析各方面之间的关系得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信