{"title":"Improving test suites for efficient fault localization","authors":"B. Baudry, Franck Fleurey, Yves Le Traon","doi":"10.1145/1134285.1134299","DOIUrl":null,"url":null,"abstract":"The need for testing-for-diagnosis strategies has been identified for a long time, but the explicit link from testing to diagnosis (fault localization) is rare. Analyzing the type of information needed for efficient fault localization, we identify the attribute (called Dynamic Basic Block) that restricts the accuracy of a diagnosis algorithm. Based on this attribute, a test-for-diagnosis criterion is proposed and validated through rigorous case studies: it shows that a test suite can be improved to reach a high level of diagnosis accuracy. So, the dilemma between a reduced testing effort (with as few test cases as possible) and the diagnosis accuracy (that needs as much test cases as possible to get more information) is partly solved by selecting test cases that are dedicated to diagnosis.","PeriodicalId":246572,"journal":{"name":"Proceedings of the 28th international conference on Software engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"227","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th international conference on Software engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1134285.1134299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 227
Abstract
The need for testing-for-diagnosis strategies has been identified for a long time, but the explicit link from testing to diagnosis (fault localization) is rare. Analyzing the type of information needed for efficient fault localization, we identify the attribute (called Dynamic Basic Block) that restricts the accuracy of a diagnosis algorithm. Based on this attribute, a test-for-diagnosis criterion is proposed and validated through rigorous case studies: it shows that a test suite can be improved to reach a high level of diagnosis accuracy. So, the dilemma between a reduced testing effort (with as few test cases as possible) and the diagnosis accuracy (that needs as much test cases as possible to get more information) is partly solved by selecting test cases that are dedicated to diagnosis.