CAEFL: composable and environment aware federated learning models

Ruomeng Xu, A. L. Michala, P. Trinder
{"title":"CAEFL: composable and environment aware federated learning models","authors":"Ruomeng Xu, A. L. Michala, P. Trinder","doi":"10.1145/3546186.3549927","DOIUrl":null,"url":null,"abstract":"Federated Learning allows multiple distributed agents to contribute to a global machine learning model. Each agent trains locally and contributes to a global model by sending gradients to a central parameter server. The approach has some limitations: 1) some events may only occur in the local environment, so a global model may not perform as well as a specialized model; 2) changes in the local environment may require an agent to use some dedicated model, that is not available in a single global model; 3) a single global model approach is unable to derive new models from dealing with complex environments. This paper proposes a novel federated learning approach, CAEFL, that is local environment aware and composes new dedicated models for new complex environments. CAEFL is implemented in Elixir to exploit transparent distribution, pattern matching, and hot-code-swapping. Pattern matching is used to transform environment sensors data to corresponding tags and aggregate data with the same environment tags on agents. It is also used on parameter server to match client’s push/pull request for these tagged models. It enables a declarative way for environment aware federated learning approach. CAEFL outperforms state of the art federated learning by 7-10% for the MNIST dataset and 2% for the FashionMNIST dataset in specific and complex environments.","PeriodicalId":232430,"journal":{"name":"Proceedings of the 21st ACM SIGPLAN International Workshop on Erlang","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM SIGPLAN International Workshop on Erlang","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546186.3549927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning allows multiple distributed agents to contribute to a global machine learning model. Each agent trains locally and contributes to a global model by sending gradients to a central parameter server. The approach has some limitations: 1) some events may only occur in the local environment, so a global model may not perform as well as a specialized model; 2) changes in the local environment may require an agent to use some dedicated model, that is not available in a single global model; 3) a single global model approach is unable to derive new models from dealing with complex environments. This paper proposes a novel federated learning approach, CAEFL, that is local environment aware and composes new dedicated models for new complex environments. CAEFL is implemented in Elixir to exploit transparent distribution, pattern matching, and hot-code-swapping. Pattern matching is used to transform environment sensors data to corresponding tags and aggregate data with the same environment tags on agents. It is also used on parameter server to match client’s push/pull request for these tagged models. It enables a declarative way for environment aware federated learning approach. CAEFL outperforms state of the art federated learning by 7-10% for the MNIST dataset and 2% for the FashionMNIST dataset in specific and complex environments.
CAEFL:可组合和环境感知的联邦学习模型
联邦学习允许多个分布式代理为全局机器学习模型做出贡献。每个代理在本地进行训练,并通过向中心参数服务器发送梯度来构建全局模型。该方法有一些局限性:1)一些事件可能只发生在局部环境中,因此全局模型可能不如专门模型执行得好;2)局部环境的变化可能需要agent使用一些专用模型,这在单个全局模型中是不可用的;3)单一的全局模型方法无法从复杂的环境中推导出新的模型。本文提出了一种新的联邦学习方法CAEFL,它具有局部环境感知能力,并为新的复杂环境构建了新的专用模型。CAEFL在Elixir中实现,利用透明分布、模式匹配和热代码交换。使用模式匹配将环境传感器数据转换为相应的标签,并在代理上聚合具有相同环境标签的数据。它还用于参数服务器,以匹配客户端对这些标记模型的推/拉请求。它为环境感知的联邦学习方法提供了一种声明式的方法。在特定和复杂的环境中,CAEFL在MNIST数据集上的表现比最先进的联邦学习好7-10%,在FashionMNIST数据集上的表现好2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信