{"title":"AN EXTENDED KATZ’S DISTRIBUTION OBTAINED BY THE BETA TRANSFORMATION FOR THE COUNT DATA","authors":"M. Koukouatikissa Diafouka","doi":"10.37418/jcsam.4.2.2","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an extension of the Katz distribution constructed by the beta transformation. This is a new three-parameter distribution for the analysis and modeling of count data, which we call the new extended Katz distribution. We will study the new distribution from a probabilistic and statistical point of view. We perform a comparison study with an other extension of the Katz distribution with two methods: graphical and goodness-of-fit comparisons. For goodness-of-fit, we have considered the real data and the parameters are estimated by the maximum likelihood method.","PeriodicalId":361024,"journal":{"name":"Journal of Computer Science and Applied Mathematics","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/jcsam.4.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce an extension of the Katz distribution constructed by the beta transformation. This is a new three-parameter distribution for the analysis and modeling of count data, which we call the new extended Katz distribution. We will study the new distribution from a probabilistic and statistical point of view. We perform a comparison study with an other extension of the Katz distribution with two methods: graphical and goodness-of-fit comparisons. For goodness-of-fit, we have considered the real data and the parameters are estimated by the maximum likelihood method.