Approximation of Distribution of Log-returns with Normal Inverse Gaussian Process

O. Rubenis, Andrejs Matvejevs
{"title":"Approximation of Distribution of Log-returns with Normal Inverse Gaussian Process","authors":"O. Rubenis, Andrejs Matvejevs","doi":"10.1109/ITMS.2018.8552949","DOIUrl":null,"url":null,"abstract":"Normal inverse Gaussian (NIG) distribution is a quit a new distribution introduced in 1997. This is distribution, which describes evolution of NIG process. It appears that in many cases NIG distribution describes log-returns of stock prices with a high accuracy. Unlike normal distribution, it has higher kurtosis, which is necessary to fit many historical returns. This gives the opportunity to construct precise algorithms for hedging risks of options. The aim of this work is to evaluate how good NIG distribution can reproduce stock price dynamics and to illuminate future fields of applications.","PeriodicalId":367060,"journal":{"name":"2018 59th International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 59th International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITMS.2018.8552949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Normal inverse Gaussian (NIG) distribution is a quit a new distribution introduced in 1997. This is distribution, which describes evolution of NIG process. It appears that in many cases NIG distribution describes log-returns of stock prices with a high accuracy. Unlike normal distribution, it has higher kurtosis, which is necessary to fit many historical returns. This gives the opportunity to construct precise algorithms for hedging risks of options. The aim of this work is to evaluate how good NIG distribution can reproduce stock price dynamics and to illuminate future fields of applications.
用正态反高斯过程逼近对数收益分布
正态反高斯分布(NIG)是1997年引入的一种新分布。这是分布,它描述了NIG过程的演化。似乎在许多情况下,NIG分布描述股票价格的对数回报具有很高的准确性。与正态分布不同,它具有较高的峰度,这是拟合许多历史收益所必需的。这为构建对冲期权风险的精确算法提供了机会。这项工作的目的是评估NIG分布如何能够很好地再现股票价格动态,并阐明未来的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信