A genetic learning of the fuzzy rule-based classification system granularity for highly imbalanced data-sets

P. Villar, Alberto Fernández, F. Herrera
{"title":"A genetic learning of the fuzzy rule-based classification system granularity for highly imbalanced data-sets","authors":"P. Villar, Alberto Fernández, F. Herrera","doi":"10.1109/FUZZY.2009.5277304","DOIUrl":null,"url":null,"abstract":"In this contribution we analyse the significance of the granularity level (number of labels) in Fuzzy Rule-Based Classification Systems in the scenario of data-sets with a high imbalance degree. We refer to imbalanced data-sets when the class distribution is not uniform, a situation that it is present in many real application areas. The aim of this work is to adapt the number of fuzzy labels for each problem, applying a fine granularity in those variables which have a higher dispersion of values and a thick granularity in the variables where an excessive number of labels may result irrelevant. We compare this methodology with the use of a fixed number of labels and with the C4.5 decision tree.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this contribution we analyse the significance of the granularity level (number of labels) in Fuzzy Rule-Based Classification Systems in the scenario of data-sets with a high imbalance degree. We refer to imbalanced data-sets when the class distribution is not uniform, a situation that it is present in many real application areas. The aim of this work is to adapt the number of fuzzy labels for each problem, applying a fine granularity in those variables which have a higher dispersion of values and a thick granularity in the variables where an excessive number of labels may result irrelevant. We compare this methodology with the use of a fixed number of labels and with the C4.5 decision tree.
高度不平衡数据集模糊规则分类系统粒度的遗传学习
在这篇贡献中,我们分析了基于模糊规则的分类系统中粒度级别(标签数量)在数据集高度不平衡情况下的重要性。当类分布不均匀时,我们指的是不平衡数据集,这种情况在许多实际应用领域都存在。这项工作的目的是为每个问题调整模糊标签的数量,在那些具有较高分散值的变量中应用细粒度,在标签数量过多可能导致不相关的变量中应用粗粒度。我们将这种方法与使用固定数量的标签和C4.5决策树进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信