Wide-area motion imagery (WAMI) exploitation tools for enhanced situation awareness

Erik Blasch, G. Seetharaman, K. Palaniappan, Haibin Ling, Genshe Chen
{"title":"Wide-area motion imagery (WAMI) exploitation tools for enhanced situation awareness","authors":"Erik Blasch, G. Seetharaman, K. Palaniappan, Haibin Ling, Genshe Chen","doi":"10.1109/AIPR.2012.6528198","DOIUrl":null,"url":null,"abstract":"The advent of streaming feeds of full-motion video (FMV) and wide-area motion imagery (WAMI) have overloaded an image analyst's capacity to detect patterns, movements, and patterns of life. To aid in the process of WAMI exploitation, we explore computer vision and pattern recognition methods to cue the user to salient information. For enhanced exploitation and analysis, there is a need to develop WAMI methods for situation awareness. Computer vision algorithms provide cues, contexts, and communication patterns to enhance exploitation capabilities. Multi-source data fusion using exploitation context from the video needs to be linked to semantically extracted elements for situation awareness to aid an operator in rapid image understanding. In this paper, we identify: (1) opportunities from computer vision techniques to improve WAMI target tracking, (2) relate developments of clustering methods for activity-based intelligence and stochastic context-free grammars for accessing, indexing, and linking relevant information to assist processing and exploitation, and (3) address situation awareness methods of multi-intelligence collaboration for future automated video understanding techniques. Our example uses the open-source Columbus Large Image Format (CLIF) WAMI data to demonstrate connection of video-based semantic labeling with other information fusion enterprise capabilities incorporating text-based semantic extraction.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

The advent of streaming feeds of full-motion video (FMV) and wide-area motion imagery (WAMI) have overloaded an image analyst's capacity to detect patterns, movements, and patterns of life. To aid in the process of WAMI exploitation, we explore computer vision and pattern recognition methods to cue the user to salient information. For enhanced exploitation and analysis, there is a need to develop WAMI methods for situation awareness. Computer vision algorithms provide cues, contexts, and communication patterns to enhance exploitation capabilities. Multi-source data fusion using exploitation context from the video needs to be linked to semantically extracted elements for situation awareness to aid an operator in rapid image understanding. In this paper, we identify: (1) opportunities from computer vision techniques to improve WAMI target tracking, (2) relate developments of clustering methods for activity-based intelligence and stochastic context-free grammars for accessing, indexing, and linking relevant information to assist processing and exploitation, and (3) address situation awareness methods of multi-intelligence collaboration for future automated video understanding techniques. Our example uses the open-source Columbus Large Image Format (CLIF) WAMI data to demonstrate connection of video-based semantic labeling with other information fusion enterprise capabilities incorporating text-based semantic extraction.
用于增强态势感知的广域运动图像(WAMI)开发工具
全动态视频(FMV)和广域运动图像(WAMI)流媒体馈送的出现使图像分析人员检测模式、运动和生活模式的能力超负荷。为了帮助开发WAMI的过程,我们探索了计算机视觉和模式识别方法来提示用户突出信息。为了加强开发和分析,需要开发用于态势感知的WAMI方法。计算机视觉算法提供线索、上下文和通信模式来增强开发能力。利用视频上下文的多源数据融合需要与语义提取的元素相关联,以实现态势感知,帮助操作员快速理解图像。在本文中,我们确定:(1)计算机视觉技术改善WAMI目标跟踪的机会;(2)基于活动的智能和随机上下文无关语法的聚类方法的相关发展,用于访问、索引和链接相关信息,以协助处理和利用;(3)为未来的自动化视频理解技术解决多智能协作的态势感知方法。我们的示例使用开源哥伦布大图像格式(CLIF) WAMI数据来演示基于视频的语义标记与其他信息融合企业功能(包含基于文本的语义提取)的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信